

The FreeRTOS™
Reference Manual

The FreeRTOS™
Reference Manual

API Functions and Configuration Options

Amazon Web Services

Reference Manual for FreeRTOS version 10.0.0 issue 1.

© Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

http://www.FreeRTOS.org

http://www.FreeRTOS.org/plus

http://www.FreeRTOS.org/labs

http://www.freertos.org/
http://www.freertos.org/plus

 v

Contents

Contents .. 5

List of Figures .. 9

List of Code Listings .. 10

List of Tables ... 17

List of Notation ... 17

Chapter 1 About This Manual ... 18
1.1 Scope .. 19

Chapter 2 Task and Scheduler API .. 22
2.1 portSWITCH_TO_USER_MODE() .. 23
2.2 vTaskAllocateMPURegions() ... 24
2.3 xTaskAbortDelay() ... 27
2.4 xTaskCallApplicationTaskHook() ... 29
2.5 xTaskCatchUpTicks() .. 32
2.6 xTaskCheckForTimeOut() ... 33
2.7 xTaskCreate() .. 35
2.8 xTaskCreateStatic() ... 40
2.9 xTaskCreateRestricted() .. 44
2.10 vTaskDelay() ... 49
2.11 vTaskDelayUntil() .. 51
2.12 vTaskDelete() .. 54
2.13 taskDISABLE_INTERRUPTS() ... 56
2.14 taskENABLE_INTERRUPTS() .. 58
2.15 taskENTER_CRITICAL() ... 59
2.16 taskENTER_CRITICAL_FROM_ISR() .. 62
2.17 taskEXIT_CRITICAL() ... 64
2.18 taskEXIT_CRITICAL_FROM_ISR() ... 66
2.19 xTaskGetApplicationTaskTag() ... 68
2.20 xTaskGetCurrentTaskHandle() .. 70
2.21 xTaskGetIdleTaskHandle() .. 71
2.22 xTaskGetHandle() ... 72
2.23 uxTaskGetNumberOfTasks() ... 74
2.24 vTaskGetRunTimeStats() .. 75
2.25 xTaskGetSchedulerState() .. 79
2.26 uxTaskGetStackHighWaterMark() ... 80
2.27 eTaskGetState() .. 82
2.28 uxTaskGetSystemState() .. 84
2.29 vTaskGetTaskInfo() ... 88

vi

2.30 pvTaskGetThreadLocalStoragePointer() .. 90
2.31 pcTaskGetName() ... 92
2.32 xTaskGetTickCount() .. 93
2.33 xTaskGetTickCountFromISR() .. 95
2.34 vTaskList() .. 97
2.35 xTaskNotify() ... 100
2.36 xTaskNotifyAndQuery() ... 103
2.37 xTaskNotifyAndQueryFromISR() .. 107
2.38 xTaskNotifyFromISR() .. 111
2.39 xTaskNotifyGive() ... 116
2.40 vTaskNotifyGiveFromISR() ... 119
2.41 xTaskNotifyStateClear() .. 122
2.42 ulTaskNotifyTake() .. 124
2.43 ulTaskNotifyValueClear() .. 127
2.44 xTaskNotifyWait() .. 130
2.45 uxTaskPriorityGet() ... 133
2.46 vTaskPrioritySet() ... 135
2.47 vTaskResume() ... 137
2.48 xTaskResumeAll() ... 139
2.49 xTaskResumeFromISR() .. 142
2.50 vTaskSetApplicationTaskTag() ... 145
2.51 vTaskSetThreadLocalStoragePointer() ... 147
2.52 vTaskSetTimeOutState() .. 149
2.53 vTaskStartScheduler() .. 151
2.54 vTaskStepTick() .. 153
2.55 vTaskSuspend() .. 155
2.56 vTaskSuspendAll() .. 157
2.57 taskYIELD() ... 159

Chapter 3 Queue API ... 161
3.1 vQueueAddToRegistry() ... 162
3.2 xQueueAddToSet() ... 164
3.3 xQueueCreate() .. 166
3.4 xQueueCreateSet() ... 168
3.5 xQueueCreateStatic() ... 172
3.6 vQueueDelete() ... 174
3.7 pcQueueGetName() .. 176
3.8 xQueueIsQueueEmptyFromISR() ... 177
3.9 xQueueIsQueueFullFromISR() ... 178
3.10 uxQueueMessagesWaiting() ... 179
3.11 uxQueueMessagesWaitingFromISR() .. 180
3.12 xQueueOverwrite() .. 182
3.13 xQueueOverwriteFromISR() ... 184
3.14 xQueuePeek() ... 186

 vii

3.15 xQueuePeekFromISR() ... 189
3.16 xQueueReceive() ... 190
3.17 xQueueReceiveFromISR() .. 193
3.18 xQueueRemoveFromSet() .. 196
3.19 xQueueReset() .. 198
3.20 xQueueSelectFromSet() .. 199
3.21 xQueueSelectFromSetFromISR() ... 201
3.22 xQueueSend(), xQueueSendToFront(), xQueueSendToBack() 203
3.23 xQueueSendFromISR(), xQueueSendToBackFromISR(),

xQueueSendToFrontFromISR() .. 206
3.24 uxQueueSpacesAvailable() ... 210

Chapter 4 Semaphore API .. 212
4.1 vSemaphoreCreateBinary() ... 213
4.2 xSemaphoreCreateBinary() ... 216
4.3 xSemaphoreCreateBinaryStatic() .. 219
4.4 xSemaphoreCreateCounting() ... 222
4.5 xSemaphoreCreateCountingStatic() .. 225
4.6 xSemaphoreCreateMutex() ... 228
4.7 xSemaphoreCreateMutexStatic() .. 230
4.8 xSemaphoreCreateRecursiveMutex() ... 232
4.9 xSemaphoreCreateRecursiveMutexStatic() .. 235
4.10 vSemaphoreDelete() ... 237
4.11 uxSemaphoreGetCount() .. 238
4.12 xSemaphoreGetMutexHolder() .. 239
4.13 xSemaphoreGive() .. 240
4.14 xSemaphoreGiveFromISR() .. 242
4.15 xSemaphoreGiveRecursive() .. 245
4.16 xSemaphoreTake() .. 248
4.17 xSemaphoreTakeFromISR() ... 251
4.18 xSemaphoreTakeRecursive() .. 253

Chapter 5 Software Timer API .. 257
5.1 xTimerChangePeriod() .. 258
5.2 xTimerChangePeriodFromISR() .. 261
5.3 xTimerCreate() .. 263
5.4 xTimerCreateStatic() ... 267
5.5 xTimerDelete() ... 271
5.6 xTimerGetExpiryTime() ... 273
5.7 pcTimerGetName() .. 275
5.8 xTimerGetPeriod() ... 276
5.9 uxTimerGetReloadMode() ... 277
5.10 xTimerGetTimerDaemonTaskHandle() ... 278
5.11 pvTimerGetTimerID() ... 279

viii

5.12 xTimerIsTimerActive() ... 281
5.13 xTimerPendFunctionCall() .. 283
5.14 xTimerPendFunctionCallFromISR() .. 285
5.15 xTimerReset() ... 288
5.16 xTimerResetFromISR() ... 291
5.17 vTimerSetTimerID() .. 293
5.18 xTimerStart() ... 295
5.19 xTimerStartFromISR() ... 297
5.20 xTimerStop() ... 299
5.21 xTimerStopFromISR() ... 301

Chapter 6 Event Groups API .. 303
6.1 xEventGroupClearBits() .. 304
6.2 xEventGroupClearBitsFromISR() .. 306
6.3 xEventGroupCreate() .. 309
6.4 xEventGroupCreateStatic() ... 311
6.5 vEventGroupDelete() .. 313
6.6 xEventGroupGetBits() ... 314
6.7 xEventGroupGetBitsFromISR() .. 315
6.8 xEventGroupSetBits() ... 316
6.9 xEventGroupSetBitsFromISR() ... 318
6.10 xEventGroupSync() ... 321
6.11 xEventGroupWaitBits() ... 325

Chapter 7 Kernel Configuration .. 328
7.1 FreeRTOSConfig.h ... 329
7.2 Constants that Start “INCLUDE_” ... 330
7.3 Constants that Start “config” ... 334

Chapter 8 Stream Buffer API ... 353
8.1 xStreamBufferBytesAvailable() ... 354
8.2 xStreamBufferCreate() .. 355
8.3 xStreamBufferCreateStatic() ... 357
8.4 vStreamBufferDelete() .. 359
8.5 xStreamBufferIsEmpty() .. 360
8.6 xStreamBufferIsFull() .. 361
8.7 xStreamBufferReceive() .. 362
8.8 xStreamBufferReceiveFromISR() ... 365
8.9 xStreamBufferReset() ... 368
8.10 xStreamBufferSend() .. 369
8.11 xStreamBufferSendFromISR() .. 372
8.12 xStreamBufferSetTriggerLevel() ... 375
8.13 xStreamBufferSpacesAvailable() .. 376

Chapter 9 Message Buffer API .. 377

 ix

9.1 xMessageBufferCreate() ... 378
9.2 xMessageBufferCreateStatic() .. 380
9.3 vMessageBufferDelete() .. 382
9.4 xMessageBufferIsEmpty() ... 383
9.5 xMessageBufferIsFull() .. 384
9.6 xMessageBufferReceive() ... 385
9.7 xMessageBufferReceiveFromISR() ... 388
9.8 xMessageBufferReset() ... 391
9.9 xMessageBufferSend() .. 392
9.10 xMessageBufferSendFromISR() ... 395
9.11 xMessageBufferSpacesAvailable() .. 398

APPENDIX 1: Data Types and Coding Style Guide .. 399

INDEX .. 402

List of Figures

Figure 1 An example of the table produced by calling vTaskGetRunTimeStats() 75
Figure 2 An example of the table produced by calling vTaskList() .. 97
Figure 3 Time line showing the execution of 4 tasks, all of which run at the idle priority 339
Figure 4 An example interrupt priority configuration .. 342

x

List of Code Listings

Listing 1 portSWITCH_TO_USER_MODE() macro prototype .. 23
Listing 2 vTaskAllocateMPURegions() function prototype .. 24
Listing 3 The data structures used by xTaskCreateRestricted() ... 25
Listing 4 Example use of vTaskAllocateMPURegions() .. 26
Listing 5 xTaskAbortDelay() function prototype .. 27
Listing 6 Example use of xTaskAbortDelay() .. 28
Listing 7 xTaskCallApplicationTaskHook() function prototype .. 29
Listing 8 The prototype to which all task hook functions must conform 29
Listing 9 Example use of xTaskCallApplicationTaskHook() .. 31
Listing 7 xTaskCatchUpTicks () function prototype ... 32
Listing 10 xTaskCheckForTimeOut() function prototype ... 33
Listing 11 Example use of vTaskSetTimeOutState() and xTaskCheckForTimeOut() 34
Listing 12 xTaskCreate() function prototype ... 35
Listing 13 Example use of xTaskCreate() ... 39
Listing 14 xTaskCreateStatic() function prototype .. 40
Listing 15 Example use of xTaskCreateStatic() .. 43
Listing 16 xTaskCreateRestricted() function prototype ... 44
Listing 17 The data structures used by xTaskCreateRestricted() ... 45
Listing 18 Statically declaring a correctly aligned stack for use by a restricted task 46
Listing 19 Example use of xTaskCreateRestricted() ... 48
Listing 20 vTaskDelay() function prototype ... 49
Listing 21 Example use of vTaskDelay() ... 50
Listing 22 vTaskDelayUntil() function prototype .. 51
Listing 23 Example use of vTaskDelayUntil() ... 53
Listing 24 vTaskDelete() function prototype .. 54
Listing 25 Example use of the vTaskDelete() ... 55
Listing 26 taskDISABLE_INTERRUPTS() macro prototype ... 56
Listing 27 taskENABLE_INTERRUPTS() macro prototype .. 58
Listing 28 taskENTER_CRITICAL macro prototype ... 59
Listing 29 Example use of taskENTER_CRITICAL() and taskEXIT_CRITICAL() 61
Listing 30 taskENTER_CRITICAL_FROM_ISR() macro prototype .. 62
Listing 31 Example use of taskENTER_CRITICAL_FROM_ISR() and

taskEXIT_CRITICAL_FROM_ISR() ... 63
Listing 32 taskEXIT_CRITICAL() macro prototype ... 64
Listing 33 taskEXIT_CRITICAL_FROM_ISR() macro prototype ... 66
Listing 34 xTaskGetApplicationTaskTag() function prototype ... 68
Listing 35 Example use of xTaskGetApplicationTaskTag() .. 69
Listing 36 xTaskGetCurrentTaskHandle() function prototype ... 70
Listing 37 xTaskGetIdleTaskHandle() function prototype ... 71
Listing 38 xTaskGetHandle() function prototype ... 72

 xi

Listing 39 Example use of xTaskGetHandle() ... 73
Listing 40 uxTaskGetNumberOfTasks() function prototype ... 74
Listing 41 vTaskGetRunTimeStats() function prototype .. 75
Listing 42 Example macro definitions, taken from the LM3Sxxx Eclipse Demo 77
Listing 43 Example macro definitions, taken from the LPC17xx Eclipse Demo 78
Listing 44 Example use of vTaskGetRunTimeStats() .. 78
Listing 45 xTaskGetSchedulerState() function prototype .. 79
Listing 46 Example use of uxTaskGetStackHighWaterMark() ... 81
Listing 47 eTaskGetState() function prototype .. 82
Listing 48 uxTaskGetSystemState() function prototype .. 84
Listing 49 Example use of uxTaskGetSystemState() .. 86
Listing 50 The TaskStatus_t definition ... 87
Listing 51 vTaskGetTaskInfo() function prototype ... 88
Listing 52 Example use of vTaskGetTaskInfo() ... 89
Listing 53 pvTaskGetThreadLocalStoragePointer() function prototype 90
Listing 54 Example use of pvTaskGetThreadLocalStoragePointer() ... 91
Listing 55 pcTaskGetName() function prototype ... 92
Listing 56 xTaskGetTickCount() function prototype ... 93
Listing 57 Example use of xTaskGetTickCount() .. 94
Listing 58 xTaskGetTickCountFromISR() function prototype .. 95
Listing 59 Example use of xTaskGetTickCountFromISR() .. 96
Listing 60 vTaskList() function prototype ... 97
Listing 61 Example use of vTaskList() ... 99
Listing 62 xTaskNotify() function prototype ... 100
Listing 63 Example use of xTaskNotify() ... 102
Listing 64 xTaskNotifyAndQuery() function prototype ... 103
Listing 65 Example use of xTaskNotifyAndQuery() ... 106
Listing 66 xTaskNotifyAndQueryFromISR() function prototype ... 107
Listing 67 Example use of xTaskNotifyAndQueryFromISR() ... 110
Listing 68 xTaskNotifyFromISR() function prototype ... 111
Listing 69 Example use of xTaskNotifyFromISR() ... 115
Listing 70 xTaskNotifyGive() function prototype .. 116
Listing 71 Example use of xTaskNotifyGive() .. 118
Listing 72 vTaskNotifyGiveFromISR() function prototype .. 119
Listing 73 Example use of vTaskNotifyGiveFromISR() ... 121
Listing 74 xTaskNotifyStateClear() function prototype .. 122
Listing 75 Example use of xTaskNotifyStateClear() .. 123
Listing 76 ulTaskNotifyTake() function prototype .. 124
Listing 77 Example use of ulTaskNotifyTake() .. 126
Listing 78 ulTaskNotifyValueClear() function prototype ... 127
Listing 79 Example use of ulTaskNotifyValueClear () ... 129
Listing 78 xTaskNotifyWait() function prototype .. 130
Listing 79 Example use of xTaskNotifyWait() .. 132

xii

Listing 80 uxTaskPriorityGet() function prototype ... 133
Listing 81 Example use of uxTaskPriorityGet() ... 134
Listing 82 vTaskPrioritySet() function prototype ... 135
Listing 83 Example use of vTaskPrioritySet() ... 136
Listing 84 vTaskResume() function prototype ... 137
Listing 85 Example use of vTaskResume() .. 138
Listing 86 xTaskResumeAll() function prototype ... 139
Listing 87 Example use of xTaskResumeAll() .. 141
Listing 88 xTaskResumeFromISR() function prototype .. 142
Listing 89 Example use of xTaskResumeFromISR() .. 144
Listing 90 vTaskSetApplicationTaskTag() function prototype ... 145
Listing 91 Example use of vTaskSetApplicationTaskTag() ... 146
Listing 92 vTaskSetThreadLocalStoragePointer() function prototype 147
Listing 93 Example use of vTaskSetThreadLocalStoragePointer() .. 148
Listing 94 vTaskSetTimeOutState() function prototype .. 149
Listing 95 Example use of vTaskSetTimeOutState() and xTaskCheckForTimeOut() 150
Listing 96 vTaskStartScheduler() function prototype .. 151
Listing 97 Example use of vTaskStartScheduler() .. 152
Listing 98 Example use of vTaskStepTick() .. 154
Listing 99 vTaskSuspend() function prototype .. 155
Listing 100 Example use of vTaskSuspend() .. 156
Listing 101 vTaskSuspendAll() function prototype .. 157
Listing 102 Example use of vTaskSuspendAll() .. 158
Listing 103 taskYIELD() macro prototype ... 159
Listing 104 Example use of taskYIELD() .. 160
Listing 105 vQueueAddToRegistry() function prototype ... 162
Listing 106 Example use of vQueueAddToRegistry() ... 163
Listing 107 xQueueAddToSet() function prototype ... 164
Listing 108 xQueueCreate() function prototype .. 166
Listing 109 Example use of xQueueCreate() .. 167
Listing 110 xQueueCreateSet() function prototype ... 168
Listing 111 Example use of xQueueCreateSet() and other queue set API functions 171
Listing 112 xQueueCreateStatic() function prototype ... 172
Listing 113 Example use of xQueueCreateStatic() ... 173
Listing 114 vQueueDelete() function prototype ... 174
Listing 115 Example use of vQueueDelete() .. 175
Listing 116 pcQueueGetName() function prototype .. 176
Listing 117 xQueueIsQueueEmptyFromISR() function prototype ... 177
Listing 118 xQueueIsQueueFullFromISR() function prototype ... 178
Listing 119 uxQueueMessagesWaiting() function prototype ... 179
Listing 120 Example use of uxQueueMessagesWaiting() .. 179
Listing 121 uxQueueMessagesWaitingFromISR() function prototype 180
Listing 122 Example use of uxQueueMessagesWaitingFromISR() .. 181

 xiii

Listing 123 xQueueOverwrite() function prototype .. 182
Listing 124 Example use of xQueueOverwrite() .. 183
Listing 125 xQueueOverwriteFromISR() function prototype .. 184
Listing 126 Example use of xQueueOverwriteFromISR() .. 185
Listing 127 xQueuePeek() function prototype ... 186
Listing 128 Example use of xQueuePeek() ... 188
Listing 129 xQueuePeekFromISR() function prototype ... 189
Listing 130 xQueueReceive() function prototype ... 190
Listing 131 Example use of xQueueReceive() .. 192
Listing 132 xQueueReceiveFromISR() function prototype .. 193
Listing 133 Example use of xQueueReceiveFromISR() .. 195
Listing 134 xQueueRemoveFromSet() function prototype .. 196
Listing 135 Example use of xQueueRemoveFromSet() .. 197
Listing 136 xQueueReset() function prototype .. 198
Listing 137 xQueueSelectFromSet() function prototype .. 199
Listing 138 xQueueSelectFromSetFromISR() function prototype ... 201
Listing 139 Example use of xQueueSelectFromSetFromISR() ... 202
Listing 140 xQueueSend(), xQueueSendToFront() and xQueueSendToBack() function

prototypes .. 203
Listing 141 Example use of xQueueSendToBack() ... 205
Listing 142 xQueueSendFromISR(), xQueueSendToBackFromISR() and

xQueueSendToFrontFromISR() function prototypes 206
Listing 143 Example use of xQueueSendToBackFromISR() .. 209
Listing 144 uxQueueSpacesAvailable() function prototype ... 210
Listing 145 Example use of uxQueueSpacesAvailable() ... 210
Listing 146 vSemaphoreCreateBinary() macro prototype ... 213
Listing 147 Example use of vSemaphoreCreateBinary() ... 215
Listing 148 xSemaphoreCreateBinary() function prototype ... 216
Listing 149 Example use of xSemaphoreCreateBinary() ... 218
Listing 150 xSemaphoreCreateBinaryStatic() function prototype .. 219
Listing 151 Example use of xSemaphoreCreateBinaryStatic() .. 221
Listing 152 xSemaphoreCreateCounting() function prototype ... 222
Listing 153 Example use of xSemaphoreCreateCounting() .. 224
Listing 154 xSemaphoreCreateCountingStatic() function prototype .. 225
Listing 155 Example use of xSemaphoreCreateCountingStatic() ... 227
Listing 156 xSemaphoreCreateMutex() function prototype ... 228
Listing 157 Example use of xSemaphoreCreateMutex() ... 229
Listing 158 xSemaphoreCreateMutexStatic() function prototype .. 230
Listing 159 Example use of xSemaphoreCreateMutexStatic() .. 231
Listing 160 xSemaphoreCreateRecursiveMutex() function prototype 232
Listing 161 Example use of xSemaphoreCreateRecursiveMutex() ... 234
Listing 162 xSemaphoreCreateRecursiveMutexStatic() function prototype 235
Listing 163 Example use of xSemaphoreCreateRecursiveMutexStatic() 236
Listing 164 vSemaphoreDelete() function prototype ... 237

xiv

Listing 165 uxSemaphoreGetCount() function prototype .. 238
Listing 166 xSemaphoreGetMutexHolder() function prototype ... 239
Listing 167 xSemaphoreGive() function prototype .. 240
Listing 168 Example use of xSemaphoreGive() .. 241
Listing 169 xSemaphoreGiveFromISR() function prototype ... 242
Listing 170 Example use of xSemaphoreGiveFromISR() ... 244
Listing 171 xSemaphoreGiveRecursive() function prototype .. 245
Listing 172 Example use of xSemaphoreGiveRecursive() .. 247
Listing 173 xSemaphoreTake() function prototype ... 248
Listing 174 Example use of xSemaphoreTake() ... 250
Listing 175 xSemaphoreTakeFromISR() function prototype ... 251
Listing 176 xSemaphoreTakeRecursive() function prototype ... 253
Listing 177 Example use of xSemaphoreTakeRecursive() ... 255
Listing 178 xTimerChangePeriod() function prototype .. 258
Listing 179 Example use of xTimerChangePeriod() ... 260
Listing 180 xTimerChangePeriodFromISR() function prototype ... 261
Listing 181 Example use of xTimerChangePeriodFromISR() ... 262
Listing 182 xTimerCreate() function prototype .. 263
Listing 183 The timer callback function prototype ... 264
Listing 184 Definition of the callback function used in the calls to xTimerCreate() in

Listing 185 ... 265
Listing 185 Example use of xTimerCreate() .. 266
Listing 186 xTimerCreateStatic() function prototype ... 267
Listing 187 The timer callback function prototype ... 268
Listing 188 Definition of the callback function used in the calls to xTimerCreate() in

Listing 185 ... 269
Listing 189 Example use of xTimerCreateStatic() ... 270
Listing 190 xTimerDelete() macro prototype ... 271
Listing 191 xTimerGetExpiryTime() function prototype ... 273
Listing 192 Example use of xTimerGetExpiryTime() ... 274
Listing 193 pcTimerGetName() function prototype ... 275
Listing 194 xTimerGetPeriod() function prototype .. 276
Listing 195 Example use of xTimerGetPeriod() .. 276
Listing 195 uxTimerGetReloadMode() function prototype .. 277
Listing 195 Example use of uxTimerGetReloadMode() .. 277
Listing 196 xTimerGetTimerDaemonTaskHandle() function prototype 278
Listing 197 pvTimerGetTimerID() function prototype .. 279
Listing 198 Example use of pvTimerGetTimerID() .. 280
Listing 199 xTimerIsTimerActive() function prototype ... 281
Listing 200 Example use of xTimerIsTimerActive() ... 282
Listing 201 xTimerPendFunctionCall() function prototype .. 283
Listing 202 The prototype of a function that can be pended using a call to

xTimerPendFunctionCall() ... 283
Listing 203 xTimerPendFunctionCallFromISR() function prototype .. 285

 xv

Listing 204 The prototype of a function that can be pended using a call to
xTimerPendFunctionCallFromISR() ... 285

Listing 205 Example use of xTimerPendFunctionCallFromISR() .. 287
Listing 206 xTimerReset() function prototype .. 288
Listing 207 Example use of xTimerReset() .. 290
Listing 208 xTimerResetFromISR() function prototype ... 291
Listing 209 Example use of xTimerResetFromISR() ... 292
Listing 210 vTimerSetTimerID() function prototype ... 293
Listing 211 Example use of vTimerSetTimerID() ... 294
Listing 212 xTimerStart() function prototype .. 295
Listing 213 xTimerStartFromISR() macro prototype .. 297
Listing 214 Example use of xTimerStartFromISR() ... 298
Listing 215 xTimerStop() function prototype .. 299
Listing 216 xTimerStopFromISR() function prototype ... 301
Listing 217 Example use of xTimerStopFromISR() ... 302
Listing 218 xEventGroupClearBits() function prototype ... 304
Listing 219 Example use of xEventGroupClearBits() .. 305
Listing 220 xEventGroupClearBitsFromISR() function prototype .. 306
Listing 221 Example use of xEventGroupClearBitsFromISR() .. 308
Listing 222 xEventGroupCreate() function prototype .. 309
Listing 223 Example use of xEventGroupCreate() .. 310
Listing 224 xEventGroupCreateStatic() function prototype ... 311
Listing 225 Example use of xEventGroupCreateStatic() ... 312
Listing 226 vEventGroupDelete() function prototype ... 313
Listing 227 xEventGroupGetBits() function prototype ... 314
Listing 228 xEventGroupGetBitsFromISR() function prototype ... 315
Listing 229 xEventGroupSetBits() function prototype .. 316
Listing 230 Example use of xEventGroupSetBits() .. 317
Listing 231 xEventGroupSetBitsFromISR() function prototype ... 318
Listing 232 Example use of xEventGroupSetBitsFromISR() ... 320
Listing 233 xEventGroupSync() function prototype ... 321
Listing 234 Example use of xEventGroupSync() ... 324
Listing 235 xEventGroupWaitBits() function prototype .. 325
Listing 236 Example use of xEventGroupWaitBits() .. 327
Listing 237 Declaring an array that will be used as the FreeRTOS heap 334
Listing 238 An example configASSERT() definition .. 335
Listing 239 The stack overflow hook function prototype .. 335
Listing 240 An example of saving and restoring the processors privilege state 340
Listing 241 The daemon task startup hook function name and prototype. 347
Listing 242 The idle task hook function name and prototype. ... 347
Listing 243 The malloc() failed hook function name and prototype. .. 348
Listing 244 The tick hook function name and prototype. ... 351
Listing 245 size_t xStreamBufferBytesAvailable() function prototype 354
Listing 246 xStreamBufferCreate() function prototype .. 355

xvi

Listing 247 Example use of xStreamBufferCreate() .. 356
Listing 248 xStreamBufferCreateStatic() function prototype ... 357
Listing 249 Example use of xStreamBufferCreateStatic() ... 358
Listing 250 vStreamBufferDelete() function prototype .. 359
Listing 251 xStreamBufferIsEmpty() function prototype .. 360
Listing 252 xStreamBufferIsFull() function prototype .. 361
Listing 253 xStreamBufferReceive() function prototype .. 362
Listing 254 Example use of xStreamBufferReceive() ... 364
Listing 255 xStreamBufferReceiveFromISR() function prototype ... 365
Listing 256 Example use of xStreamBufferReceiveFromISR() ... 367
Listing 257 xStreamBufferReset() function prototype ... 368
Listing 258 xStreamBufferSend() function prototype .. 369
Listing 259 Example use of xStreamBufferSend() .. 371
Listing 260 xStreamBufferSendFromISR() function prototype .. 372
Listing 261 Example use of xStreamBufferSendFromISR() .. 374
Listing 262 xStreamBufferSetTriggerLevel() function prototype ... 375
Listing 263 xStreamBufferSpacesAvailable() function prototype .. 376
Listing 264 xMessageBufferCreate() function prototype ... 378
Listing 265 Example use of xMessageBufferCreate() ... 379
Listing 266 xMessageBufferCreateStatic() function prototype .. 380
Listing 267 Example use of xMessageBufferCreateStatic() .. 381
Listing 268 vMessageBufferDelete() function prototype ... 382
Listing 269 xMessageBufferIsEmpty() function prototype ... 383
Listing 270 xMessageBufferIsFull() function prototype ... 384
Listing 271 xMessageBufferReceive() function prototype ... 385
Listing 272 Example use of xMessageBufferReceive() .. 387
Listing 273 xMessageBufferReceiveFromISR() function prototype .. 388
Listing 274 Example use of xMessageBufferReceiveFromISR() .. 390
Listing 275 xMessageBufferReset() function prototype .. 391
Listing 276 xMessageBufferSend() function prototype ... 392
Listing 277 Example use of xMessageBufferSend() ... 394
Listing 278 xMessageBufferSendFromISR() function prototype ... 395
Listing 279 Example use of xMessageBufferSendFromISR() ... 397
Listing 280 xMessageBufferSpacesAvailable () function prototype .. 398

 xvii

List of Tables

Table 1. eTaskGetState() return values ... 82
Table 2. Additional macros that are required if .. 338
Table 3. Special data types used by FreeRTOS .. 399
Table 4. Macro prefixes .. 401
Table 5. Common macro definitions ... 401

List of Notation

API Application Programming Interface
ISR Interrupt Service Routine
MPU Memory Protection Unit
RTOS Real-time Operating System

xviii

Chapter 1

About This Manual

 19

1.1 Scope

This document provides a technical reference to both the primary FreeRTOS API1, and the

FreeRTOS kernel configuration options. It is assumed the reader is already familiar with the

concepts of writing multi tasking applications, and the primitives provided by real time kernels.

Readers that are not familiar with these fundamental concepts are recommended to read the

book “Mastering the FreeRTOS Real Time Kernel – A Practical Guide” for a much more

descriptive, hands on, and tutorial style text. The book can be obtained from

http://www.FreeRTOS.org/Documentation.

The Order in Which Functions Appear in This Manual

Within this document, the API functions have been split into five groups – task and scheduler

related functions, queue related functions, semaphore related functions, software timer related

functions and event group related functions. Each group is documented in its own chapter,

and within each chapter, the API functions are listed in alphabetical order. Note however that

the name of each API function is prefixed with one or more letters that specify the function’s

return type, and the alphabetical ordering of API functions within each chapter ignores the

function return type prefix. APPENDIX 1: describes the prefixes in more detail.

As an example, consider the API function that is used to create a FreeRTOS task. Its name is

xTaskCreate(). The ‘x’ prefix specifies that xTaskCreate() returns a non-standard type. The

secondary ‘Task’ prefix specifies that the function is a task related function, and, as such, will

be documented in the chapter that contains task and scheduler related functions. The ‘x’ is

not considered in the alphabetical ordering, so xTaskCreate() will appear in the task and

scheduler chapter ordered as if its name was just TaskCreate().

API Usage Restrictions

The following rules apply when using the FreeRTOS API:

1. API functions that do not end in “FromISR” must not be used in an interrupt service

routine (ISR). Some FreeRTOS ports make a further restriction that even API functions

that do end in “FromISR” cannot be used in an interrupt service routine that has a

1 The ‘alternative’ API is not included as its use is no longer recommended. The co-routine API is also
omitted as co-routines are only useful to a small subset of applications.

http://www.freertos.org/Documentation

20

(hardware) priority above the priority set by the

configMAX_SYSCALL_INTERRUPT_PRIORITY (or

configMAX_API_CALL_INTERRUPT_PRIORITY, depending on the port) kernel

configuration constant, which is described in section 7.1 of this document. The second

restriction is to ensure that the timing, determinism and latency of interrupts that have a

priority above that set by configMAX_SYSCALL_INTERRUPT_PRIORITY are not

affected by FreeRTOS.

2. API functions that can potentially cause a context switch must not be called while the

scheduler is suspended.

3. API functions that can potentially cause a context switch must not be called from within

a critical section.

 21

22

Chapter 2

Task and Scheduler API

 23

2.1 portSWITCH_TO_USER_MODE()

#include “FreeRTOS.h”
#include “task.h”

void portSWITCH_TO_USER_MODE(void);

Listing 1 portSWITCH_TO_USER_MODE() macro prototype

Summary

This function is intended for advanced users only and is only relevant to FreeRTOS MPU ports

(FreeRTOS ports that make use of a Memory Protection Unit).

MPU restricted tasks are created using xTaskCreateRestricted(). The parameters supplied to

xTaskCreateRestricted() specify whether the task being created should be a User (un-

privileged) mode task, or a Supervisor (privileged) mode task. A Supervisor mode task can

call portSWITCH_TO_USER_MODE() to convert itself from a Supervisor mode task into a

User mode task.

Parameters

None.

Return Values

None.

Notes

There is no reciprocal equivalent to portSWITCH_TO_USER_MODE() that permits a task to

convert itself from a User mode into a Supervisor mode task.

24

2.2 vTaskAllocateMPURegions()

#include “FreeRTOS.h”
#include “task.h”

void vTaskAllocateMPURegions(TaskHandle_t xTaskToModify,
 const MemoryRegion_t * const xRegions);

Listing 2 vTaskAllocateMPURegions() function prototype

Summary

Define a set of Memory Protection Unit (MPU) regions for use by an MPU restricted task.

This function is intended for advanced users only and is only relevant to FreeRTOS MPU ports

(FreeRTOS ports that make use of a Memory Protection Unit).

MPU controlled memory regions can be assigned to an MPU restricted task when the task is

created using the xTaskCreateRestricted() function. They can then be redefined (or

reassigned) at run time using the vTaskAllocateMPURegions() function.

Parameters

xTaskToModify The handle of the restricted task being modified (the task that is being given

access to the memory regions defined by the xRegions parameter).

The handle of a task is obtained using the pxCreatedTask parameter of the

xTaskCreateRestricted() API function.

A task can modify its own memory region access definitions by passing

NULL in place of a valid task handle.

xRegions An array of MemoryRegion_t structures. The number of positions in the

array is defined by the port specific portNUM_CONFIGURABLE_REGIONS

constant. On a Cortex-M3 portNUM_CONFIGURABLE_REGIONS is

defined as three.

Each MemoryRegion_t structure in the array defines a single MPU memory

region for use by the task referenced by the xTaskToModify parameter.

 25

Notes

MPU memory regions are defined using the MemoryRegion_t structure shown in Listing 3.

typedef struct xMEMORY_REGION
{
 void *pvBaseAddress;
 unsigned long ulLengthInBytes;
 unsigned long ulParameters;
} MemoryRegion_t;

Listing 3 The data structures used by xTaskCreateRestricted()

The pvBaseAddress and ulLengthInBytes members are self explanatory as the start of the

memory region and the length of the memory region respectively. These must comply with the

size and alignment restrictions imposed by the MPU. In particular, the size and alignment of

each region must both be equal to the same power of two value.

ulParameters defines how the task is permitted to access the memory region being defined,

and can take the bitwise OR of the following values:

• portMPU_REGION_READ_WRITE

• portMPU_REGION_PRIVILEGED_READ_ONLY

• portMPU_REGION_READ_ONLY

• portMPU_REGION_PRIVILEGED_READ_WRITE

• portMPU_REGION_CACHEABLE_BUFFERABLE

• portMPU_REGION_EXECUTE_NEVER

26

Example

/* Define an array that the task will both read from and write to. Make sure the
size and alignment are appropriate for an MPU region (note this uses GCC syntax). */
static unsigned char ucOneKByte[1024] __attribute__((align(1024)));

/* Define an array of MemoryRegion_t structures that configures an MPU region
allowing
read/write access for 1024 bytes starting at the beginning of the ucOneKByte array.
The other two of the maximum three definable regions are unused, so set to zero. */
static const MemoryRegion_t xAltRegions[portNUM_CONFIGURABLE_REGIONS] =
{
 /* Base address Length Parameters */
 { ucOneKByte, 1024, portMPU_REGION_READ_WRITE },
 { 0, 0, 0 },
 { 0, 0, 0 }
};

void vATask(void *pvParameters)
{
 /* This task was created using xTaskCreateRestricted() to have access to a
 maximum of three MPU controlled memory regions. At some point it is required
 that these MPU regions are replaced with those defined in the xAltRegions const
 structure defined above. Use a call to vTaskAllocateMPURegions() for this
 purpose. NULL is used as the task handle to indicate that the change should be
 applied to the calling task. */
 vTaskAllocateMPURegions(NULL, xAltRegions);

 /* Now the task can continue its function, but from this point on can only access
 its stack and the ucOneKByte array (unless any other statically defined or shared
 regions have been declared elsewhere). */
}

Listing 4 Example use of vTaskAllocateMPURegions()

 27

2.3 xTaskAbortDelay()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskAbortDelay(TaskHandle_t xTask);

Listing 5 xTaskAbortDelay() function prototype

Summary

Calling an API function that includes a timeout parameter can result in the calling task entering

the Blocked state. A task that is in the Blocked state is either waiting for a timeout period to

elapse, or waiting with a timeout for an event to occur, after which the task will automatically

leave the Blocked state and enter the Ready state. There are many examples of this

behavior, two of which are:

• If a task calls vTaskDelay() it will enter the Blocked state until the timeout specified by

the function’s parameter has elapsed, at which time the task will automatically leave

the Blocked state and enter the Ready state.

• If a task calls ulTaskNotifyTake() when its notification value is zero it will enter the

Blocked state until either it receives a notification or the timeout specified by one of the

function’s parameters has elapsed, at which time the task will automatically leave the

Blocked state and enter the Ready state.

xTaskAbortDelay() will move a task from the Blocked state to the Ready state even if the event

the task is waiting for has not occurred, and the timeout specified when the task entered the

Blocked state has not elapsed.

While a task is in the Blocked state it is not available to the scheduler, and will not consume

any processing time.

Parameters

xTask The handle of the task that will be moved out of the Blocked state.

To obtain a task’s handle create the task using xTaskCreate() and make use of

the pxCreatedTask parameter, or create the task using xTaskCreateStatic() and

28

store the returned value, or use the task’s name in a call to xTaskGetHandle().

Returned

value

If the task referenced by xTask was removed from the Blocked state then

pdPASS is returned. If the task referenced by xTask was not removed from the

Blocked state because it was not in the Blocked state then pdFAIL is returned.

Notes

INCLUDE_xTaskAbortDelay must be set to 1 in FreeRTOSConfig.h for xTaskAbortDelay() to

be available.

Example

void vAFunction(TaskHandle_t xTask)
{
 /* The task referenced by xTask is blocked to wait for something that the task calling
 this function has determined will never happen. Force the task referenced by xTask
 out of the Blocked state. */
 if(xTaskAbortDelay(xTask) == pdFAIL)
 {
 /* The task referenced by xTask was not in the Blocked state anyway. */
 }
 else
 {
 /* The task referenced by xTask was in the Blocked state, but is not now. */
 }
}

Listing 6 Example use of xTaskAbortDelay()

 29

2.4 xTaskCallApplicationTaskHook()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskCallApplicationTaskHook(TaskHandle_t xTask, void *pvParameters);

Listing 7 xTaskCallApplicationTaskHook() function prototype

Summary

This function is intended for advanced users only.

The vTaskSetApplicationTaskTag() function can be used to assign a ‘tag’ value to a task. The

meaning and use of the tag value is defined by the application writer. The kernel itself will not

normally access the tag value.

As a special case, the tag value can be used to associate a ‘task hook’ (or callback) function to

a task. When this is done, the hook function is called using xTaskCallApplicationTaskHook().

Task hook functions can be used for any purpose. The example shown in this section

demonstrates a task hook being used to output debug trace information.

Task hook functions must have the prototype demonstrated by Listing 8.

BaseType_t xAnExampleTaskHookFunction(void *pvParameters);

Listing 8 The prototype to which all task hook functions must conform

xTaskCallApplicationTaskHook() is only available when
configUSE_APPLICATION_TASK_TAG is set to 1 in FreeRTOSConfig.h.

Parameters

xTask The handle of the task whose associated hook function is being called.

To obtain a task’s handle create the task using xTaskCreate() and make use

of the pxCreatedTask parameter, or create the task using xTaskCreateStatic()

and store the returned value, or use the task’s name in a call to

30

xTaskGetHandle().

A task can call its own hook function by passing NULL in place of a valid task

handle.

pvParameters The value used as the parameter to the task hook function itself.

This parameter has the type ‘pointer to void’ to allow the task hook function

parameter to effectively, and indirectly by means of casting, receive a

parameter of any type. For example, integer types can be passed into a hook

function by casting the integer to a void pointer at the point the hook function

is called, then by casting the void pointer parameter back to an integer within

the hook function itself.

 31

Example

/* Define a hook (callback) function – using the required prototype as
demonstrated by Listing 8 */
static BaseType_t prvExampleTaskHook(void * pvParameter)
{
 /* Perform an action - this could be anything. In this example the hook
 is used to output debug trace information. pxCurrentTCB is the handle
 of the currently executing task. (vWriteTrace() is not an API function,
 its just used as an example.) */
 vWriteTrace(pxCurrentTCB);

 /* This example does not make use of the hook return value so just returns
 0 in every case. */
 return 0;
}

/* Define an example task that makes use of its tag value. */
void vAnotherTask(void *pvParameters)
{
 /* vTaskSetApplicationTaskTag() sets the ‘tag’ value associated with a task.
 NULL is used in place of a valid task handle to indicate that it should be
 the tag value of the calling task that gets set. In this example the ‘value’
 being set is the hook function. */
 vTaskSetApplicationTaskTag(NULL, prvExampleTaskHook);

 for(;;)
 {
 /* The rest of the task code goes here. */
 }
}

/* Define the traceTASK_SWITCHED_OUT() macro to call the hook function of each
task that is switched out. pxCurrentTCB points to the handle of the currently
running task. */
#define traceTASK_SWITCHED_OUT() xTaskCallApplicationTaskHook(pxCurrentTCB, 0)

Listing 9 Example use of xTaskCallApplicationTaskHook()

32

2.5 xTaskCatchUpTicks()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskCatchUpTicks(TickType_t xTicksToCatchUp);

Listing 10 xTaskCatchUpTicks () function prototype

Summary

This function corrects the tick count value after the application code has held interrupts

disabled for an extended period resulting in tick interrupts having been missed.

This function is similar to vTaskStepTick(), however, unlike vTaskStepTick(),

xTaskCatchUpTicks() may move the tick count forward past a time at which a task should be

removed from the blocked state as the tick count is moved.

Parameters

xTicksToCatchUp The number of tick interrupts that have been missed due to interrupts

being disabled. Its value is not computed automatically, so must be

computed by the application writer.

Returned value pdTrue if moving the tick count forward resulted in a task leaving the

blocked state and a context switch being performed. Otherwise pdFALSE.

 33

2.6 xTaskCheckForTimeOut()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskCheckForTimeOut(TimeOut_t * const pxTimeOut,
 TickType_t * const pxTicksToWait);

Listing 11 xTaskCheckForTimeOut() function prototype

Summary

This function is intended for advanced users only.

A task can enter the Blocked state to wait for an event. Typically, the task will not wait in the

Blocked state indefinitely, but instead a timeout period will be specified. The task will be

removed from the Blocked state if the timeout period expires before the event the task is

waiting for occurs.

If a task enters and exits the Blocked state more than once while it is waiting for the event to

occur then the timeout used each time the task enters the Blocked state must be adjusted to

ensure the total of all the time spent in the Blocked state does not exceed the originally

specified timeout period. xTaskCheckForTimeOut() performs the adjustment, taking into

account occasional occurrences such as tick count overflows, which would otherwise make a

manual adjustment prone to error.

xTaskCheckForTimeOut() is used with vTaskSetTimeOutState(). vTaskSetTimeOutState() is

called to set the initial condition, after which xTaskCheckForTimeOut() can be called to check

for a timeout condition, and adjust the remaining block time if a timeout has not occurred.

Parameters

pxTimeOut A pointer to a structure that holds information necessary to determine if a

timeout has occurred. pxTimeOut is initialized using

vTaskSetTimeOutState().

pxTicksToWait Used to pass out an adjusted block time, which is the block time that remains

after taking into account the time already spent in the Blocked state.

34

Returned

value

If pdTRUE is returned then no block time remains, and a timeout has

occurred.

If pdFALSE is returned then some block time remains, so a timeout has not

occurred.

Example

/* Driver library function used to receive uxWantedBytes from an Rx buffer that is filled
by a UART interrupt. If there are not enough bytes in the Rx buffer then the task enters
the Blocked state until it is notified that more data has been placed into the buffer. If
there is still not enough data then the task re-enters the Blocked state, and
xTaskCheckForTimeOut() is used to re-calculate the Block time to ensure the total amount
of time spent in the Blocked state does not exceed MAX_TIME_TO_WAIT. This continues until
either the buffer contains at least uxWantedBytes bytes, or the total amount of time spent
in the Blocked state reaches MAX_TIME_TO_WAIT – at which point the task reads however many
bytes are available up to a maximum of uxWantedBytes. */
size_t xUART_Receive(uint8_t *pucBuffer, size_t uxWantedBytes)
{
size_t uxReceived = 0;
TickType_t xTicksToWait = MAX_TIME_TO_WAIT;
TimeOut_t xTimeOut;

 /* Initialize xTimeOut. This records the time at which this function was entered. */
 vTaskSetTimeOutState(&xTimeOut);

 /* Loop until the buffer contains the wanted number of bytes, or a timeout occurs. */
 while(UART_bytes_in_rx_buffer(pxUARTInstance) < uxWantedBytes)
 {
 /* The buffer didn’t contain enough data so this task is going to enter the Blocked
 state. Adjusting xTicksToWait to account for any time that has been spent in the
 Blocked state within this function so far to ensure the total amount of time spent
 in the Blocked state does not exceed MAX_TIME_TO_WAIT. */
 if(xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) != pdFALSE)
 {
 /* Timed out before the wanted number of bytes were available, exit the loop. */
 break;
 }

 /* Wait for a maximum of xTicksToWait ticks to be notified that the receive
 interrupt has placed more data into the buffer. */
 ulTaskNotifyTake(pdTRUE, xTicksToWait);
 }

 /* Attempt to read uxWantedBytes from the receive buffer into pucBuffer. The actual
 number of bytes read (which might be less than uxWantedBytes) is returned. */
 uxReceived = UART_read_from_receive_buffer(pxUARTInstance, pucBuffer, uxWantedBytes);

 return uxReceived;
}

Listing 12 Example use of vTaskSetTimeOutState() and xTaskCheckForTimeOut()

 35

2.7 xTaskCreate()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode,
 const char * const pcName,
 unsigned short usStackDepth,
 void *pvParameters,
 UBaseType_t uxPriority,
 TaskHandle_t *pxCreatedTask);

Listing 13 xTaskCreate() function prototype

Summary

Creates a new instance of a task.

Each task requires RAM that is used to hold the task state (the task control block, or TCB),

and used by the task as its stack. If a task is created using xTaskCreate() then the required

RAM is automatically allocated from the FreeRTOS heap. If a task is created using

xTaskCreateStatic() then the RAM is provided by the application writer, which results in two

additional function parameters, but allows the RAM to be statically allocated at compile time.

Newly created tasks are initially placed in the Ready state, but will immediately become the

Running state task if there are no higher priority tasks that are able to run.

Tasks can be created both before and after the scheduler has been started.

Parameters

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally

implemented as an infinite loop. The pvTaskCode parameter is simply a

pointer to the function (in effect, just the function name) that implements the

task.

pcName A descriptive name for the task. This is mainly used to facilitate debugging,

but can also be used in a call to xTaskGetHandle() to obtain a task handle.

The application-defined constant configMAX_TASK_NAME_LEN defines the

maximum length of the name in characters – including the NULL terminator.

Supplying a string longer than this maximum will result in the string being

36

silently truncated.

usStackDepth Each task has its own unique stack that is allocated by the kernel to the task

when the task is created. The usStackDepth value tells the kernel how large

to make the stack.

The value specifies the number of words the stack can hold, not the number

of bytes. For example, on an architecture with a 4 byte stack width, if

usStackDepth is passed in as 100, then 400 bytes of stack space will be

allocated (100 * 4 bytes). The stack depth multiplied by the stack width must

not exceed the maximum value that can be contained in a variable of type

size_t.

The size of the stack used by the idle task is defined by the application-

defined constant configMINIMAL_STACK_SIZE. The value assigned to this

constant in the demo application provided for the chosen microcontroller

architecture is the minimum recommended for any task on that architecture.

If your task uses a lot of stack space, then you must assign a larger value.

pvParameters Task functions accept a parameter of type ‘pointer to void’ (void*). The

value assigned to pvParameters will be the value passed into the task.

This parameter has the type ‘pointer to void’ to allow the task parameter to

effectively, and indirectly by means of casting, receive a parameter of any

type. For example, integer types can be passed into a task function by

casting the integer to a void pointer at the point the task is created, then by

casting the void pointer parameter back to an integer in the task function

definition itself.

uxPriority Defines the priority at which the task will execute. Priorities can be assigned

from 0, which is the lowest priority, to (configMAX_PRIORITIES – 1), which

is the highest priority.

configMAX_PRIORITIES is a user defined constant. If

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 0 then there is

no upper limit to the number of priorities that can be available (other than the

limit of the data types used and the RAM available in your microcontroller),

but it is advised to use the lowest number of priorities required, to avoid

 37

wasting RAM.

Passing a uxPriority value above (configMAX_PRIORITIES – 1) will result in

the priority assigned to the task being capped silently to the maximum

legitimate value.

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being created.

This handle can then be used to reference the task in API calls that, for

example, change the task priority or delete the task.

If your application has no use for the task handle, then pxCreatedTask can

be set to NULL.

Return Values

pdPASS Indicates that the task has been

created successfully.

errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY Indicates that the task could not be

created because there was

insufficient heap memory available for

FreeRTOS to allocate the task data

structures and stack.

If heap_1.c, heap_2.c or heap_4.c

are included in the project then the

total amount of heap available is

defined by configTOTAL_HEAP_SIZE

in FreeRTOSConfig.h, and failure to

allocate memory can be trapped

using the

vApplicationMallocFailedHook()

callback (or ‘hook’) function, and the

amount of free heap memory

remaining can be queried using the

xPortGetFreeHeapSize() API

function.

38

If heap_3.c is included in the project

then the total heap size is defined by

the linker configuration.

Notes

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, or simply

left undefined, for this function to be available.

 39

Example

/* Define a structure called xStruct and a variable of type xStruct. These are just used to
demonstrate a parameter being passed into a task function. */
typedef struct A_STRUCT
{
 char cStructMember1;
 char cStructMember2;
} xStruct;

/* Define a variable of the type xStruct to pass as the task parameter. */
xStruct xParameter = { 1, 2 };

/* Define the task that will be created. Note the name of the function that implements the task
is used as the first parameter in the call to xTaskCreate() below. */
void vTaskCode(void * pvParameters)
{
xStruct *pxParameters;

 /* Cast the void * parameter back to the required type. */
 pxParameters = (xStruct *) pvParameters;

 /* The parameter can now be accessed as expected. */
 if(pxParameters->cStructMember1 != 1)
 {
 /* Etc. */
 }

 /* Enter an infinite loop to perform the task processing. */
 for(;;)
 {
 /* Task code goes here. */
 }
}

/* Define a function that creates a task. This could be called either before or after the
scheduler has been started. */
void vAnotherFunction(void)
{
TaskHandle_t xHandle;

 /* Create the task. */
 if(xTaskCreate(
 vTaskCode, /* Pointer to the function that implements the task. */
 "Demo task", /* Text name given to the task. */
 STACK_SIZE, /* The size of the stack that should be created for the task.
 This is defined in words, not bytes. */
 (void*) &xParameter,/* A reference to xParameters is used as the task parameter.
 This is cast to a void * to prevent compiler warnings. */
 TASK_PRIORITY, /* The priority to assign to the newly created task. */
 &xHandle /* The handle to the task being created will be placed in
 xHandle. */
) != pdPASS)
 {
 /* The task could not be created as there was insufficient heap memory remaining. If
 heap_1.c, heap_2.c or heap_4.c are included in the project then this situation can be
 trapped using the vApplicationMallocFailedHook() callback (or ‘hook’) function, and the
 amount of FreeRTOS heap memory that remains unallocated can be queried using the
 xPortGetFreeHeapSize() API function.*/
 }
 else
 {
 /* The task was created successfully. The handle can now be used in other API functions,
 for example to change the priority of the task.*/
 vTaskPrioritySet(xHandle, 2);
 }
}

Listing 14 Example use of xTaskCreate()

40

2.8 xTaskCreateStatic()

#include “FreeRTOS.h”
#include “task.h”

TaskHandle_t xTaskCreateStatic(TaskFunction_t pvTaskCode,
 const char * const pcName,
 uint32_t ulStackDepth,
 void *pvParameters,
 UBaseType_t uxPriority,
 StackType_t * const puxStackBuffer,
 StaticTask_t * const pxTaskBuffer);

Listing 15 xTaskCreateStatic() function prototype

Summary

Creates a new instance of a task.

Each task requires RAM that is used to hold the task state (the task control block, or TCB),

and used by the task as its stack. If a task is created using xTaskCreate() then the required

RAM is automatically allocated from the FreeRTOS heap. If a task is created using

xTaskCreateStatic() then the RAM is provided by the application writer, which results in two

additional function parameters, but allows the RAM to be statically allocated at compile time.

Newly created tasks are initially placed in the Ready state, but will immediately become the

Running state task if there are no higher priority tasks that are able to run.

Tasks can be created both before and after the scheduler has been started.

Parameters

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally

implemented as an infinite loop. The pvTaskCode parameter is simply a

pointer to the function (in effect, just the function name) that implements the

task.

pcName A descriptive name for the task. This is mainly used to facilitate debugging,

but can also be used in a call to xTaskGetHandle() to obtain a task handle.

The application-defined constant configMAX_TASK_NAME_LEN defines the

maximum length of the name in characters – including the NULL terminator.

 41

Supplying a string longer than this maximum will result in the string being

silently truncated.

ulStackDepth The puxStackBuffer parameter is used to pass an array of StackType_t

variables into xTaskCreateStatic(). ulStackDepth must be set to the number

of indexes in the array.

pvParameters Task functions accept a parameter of type ‘pointer to void’ (void*). The

value assigned to pvParameters will be the value passed into the task.

This parameter has the type ‘pointer to void’ to allow the task parameter to

effectively, and indirectly by means of casting, receive a parameter of any

type. For example, integer types can be passed into a task function by

casting the integer to a void pointer at the point the task is created, then by

casting the void pointer parameter back to an integer in the task function

definition itself.

uxPriority Defines the priority at which the task will execute. Priorities can be assigned

from 0, which is the lowest priority, to (configMAX_PRIORITIES – 1), which

is the highest priority.

configMAX_PRIORITIES is a user defined constant. If

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 0 then there is

no upper limit to the number of priorities that can be available (other than the

limit of the data types used and the RAM available in your microcontroller),

but it is advised to use the lowest number of priorities required, to avoid

wasting RAM.

Passing a uxPriority value above (configMAX_PRIORITIES – 1) will result in

the priority assigned to the task being capped silently to the maximum

legitimate value.

puxStackBuffer Must point to an array of StackType_t variables that has at least

ulStackDepth indexes (see the ulStackDepth parameter above). The array

will be used as the created task’s stack, so must be persistent (not declared

within the stack frame created by a function, or in any other memory that can

legitimately be overwritten as the application executes).

42

pxTaskBuffer Must point to a variable of type StaticTask_t. The variable will be used to

hold the created task's data structures (TCB), so it must be persistent (not

declared within the stack frame created by a function, or in any other

memory that can legitimately be overwritten as the application executes).

Return Values

NULL The task could not be created because puxStackBuffer or pxTaskBuffer was

NULL.

Any other

value

If a non-NULL value is returned then the task was created and the returned

value is the handle of the created task.

Notes

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for this

function to be available.

 43

Example

/* Dimensions the buffer that the task being created will use as its stack. NOTE: This is the
number of words the stack will hold, not the number of bytes. For example, if each stack item
is 32-bits, and this is set to 100, then 400 bytes (100 * 32-bits) will be allocated. */
#define STACK_SIZE 200

/* Structure that will hold the TCB of the task being created. */
StaticTask_t xTaskBuffer;

/* Buffer that the task being created will use as its stack. Note this is an array of
StackType_t variables. The size of StackType_t is dependent on the RTOS port. */
StackType_t xStack[STACK_SIZE];

/* Function that implements the task being created. */
void vTaskCode(void * pvParameters)
{
 /* The parameter value is expected to be 1 as 1 is passed in the pvParameters parameter
 in the call to xTaskCreateStatic(). */
 configASSERT((uint32_t) pvParameters == 1UL);

 for(;;)
 {
 /* Task code goes here. */
 }
}

/* Function that creates a task. */
void vFunction(void)
{
 TaskHandle_t xHandle = NULL;

 /* Create the task without using any dynamic memory allocation. */
 xHandle = xTaskCreateStatic(
 vTaskCode, /* Function that implements the task. */
 "NAME", /* Text name for the task. */
 STACK_SIZE, /* The number of indexes in the xStack array. */
 (void *) 1, /* Parameter passed into the task. */
 tskIDLE_PRIORITY,/* Priority at which the task is created. */
 xStack, /* Array to use as the task's stack. */
 &xTaskBuffer); /* Variable to hold the task's data structure. */

 /* puxStackBuffer and pxTaskBuffer were not NULL, so the task will have been created, and
 xHandle will be the task's handle. Use the handle to suspend the task. */
 vTaskSuspend(xHandle);
}

Listing 16 Example use of xTaskCreateStatic()

44

2.9 xTaskCreateRestricted()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskCreateRestricted(TaskParameters_t *pxTaskDefinition,
 TaskHandle_t *pxCreatedTask);

Listing 17 xTaskCreateRestricted() function prototype

Summary

This function is intended for advanced users only and is only relevant to FreeRTOS MPU ports

(FreeRTOS ports that make use of a Memory Protection Unit).

Create a new Memory Protection Unit (MPU) restricted task.

Newly created tasks are initially placed in the Ready state, but will immediately become the

Running state task if there are no higher priority tasks that are able to run.

Tasks can be created both before and after the scheduler has been started.

Parameters

pxTaskDefinition Pointer to a structure that defines the task. The structure is described under

the notes heading in this section of the reference manual.

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being created.

This handle can then be used to reference the task in API calls that, for

example, change the task priority or delete the task.

If your application has no use for the task handle, then pxCreatedTask can

be set to NULL.

Return Values

pdPASS Indicates that the task has been created successfully.

Any other value Indicates that the task could not be created as specified, probably because

there is insufficient FreeRTOS heap memory available to allocate the task

data structures.

 45

If heap_1.c, heap_2.c or heap_4.c are included in the project then the total

amount of heap available is defined by configTOTAL_HEAP_SIZE in

FreeRTOSConfig.h, and failure to allocate memory can be trapped using

the vApplicationMallocFailedHook() callback (or ‘hook’) function, and the

amount of free heap memory remaining can be queried using the

xPortGetFreeHeapSize() API function.

If heap_3.c is included in the project then the total heap size is defined by

the linker configuration.

Notes

xTaskCreateRestricted() makes use of the two data structures shown in Listing 18.

typedef struct xTASK_PARAMTERS
{
 TaskFunction_t pvTaskCode;
 const signed char * const pcName;
 unsigned short usStackDepth;
 void *pvParameters;
 UBaseType_t uxPriority;
 portSTACK_TYPE *puxStackBuffer;
 MemoryRegion_t xRegions[portNUM_CONFIGURABLE_REGIONS];
} TaskParameters_t;

/*where MemoryRegion_t is defined as: */

typedef struct xMEMORY_REGION
{
 void *pvBaseAddress;
 unsigned long ulLengthInBytes;
 unsigned long ulParameters;
} MemoryRegion_t;

Listing 18 The data structures used by xTaskCreateRestricted()

A description of the Listing 18 structure members is given below.

pvTaskCode
to
uxPriority

These structure members are equivalent to the xTaskCreate() API function

parameters that have the same names.

Unlike standard FreeRTOS tasks, protected tasks can be created in either

User (un-privileged) or Supervisor (privileged) modes, and the uxPriority

46

structure member is used to control this option. To create a task in User

mode, uxPriority is set to equal the priority at which the task is to be

created. To create a task in Supervisor mode, uxPriority is set to equal the

priority at which the task is to be created and to have its most significant bit

set. The macro portPRIVILEGE_BIT is provided for this purpose.

For example, to create a User mode task at priority three, set uxPriority to

equal 3. To create a Supervisor mode task at priority three, set uxPriority

to equal (3 | portPRIVILEGE_BIT).

puxStackBuffer The xTaskCreate() API function will automatically allocate a stack for use

by the task being created. The restrictions imposed by using an MPU

means that the xTaskCreateRestricted() function cannot do the same, and

instead, the stack used by the task being created must be statically

allocated and passed into the xTaskCreateRestricted() function using the

puxStackBuffer parameter.

Each time a restricted task is switched in (transitioned to the Running

state) the MPU is dynamically re-configured to define an MPU region that

provides the task read and write access to its own stack. Therefore, the

statically allocated task stack must comply with the size and alignment

restrictions imposed by the MPU. In particular, the size and alignment of

each region must both be equal to the same power of two value.

Statically declaring a stack buffer allows the alignment to be managed

using compiler extensions, and allows the linker to take care of stack

placement, which it will do as efficiently as possible. For example, if using

GCC, a stack can be declared and correctly aligned using the following

syntax:

char cTaskStack[1024] __attribute__((align(1024));

 Listing 19 Statically declaring a correctly aligned stack
for use by a restricted task

MemoryRegion_t An array of MemoryRegion_t structures. Each MemoryRegion_t structure

 47

defines a single MPU memory region for use by the task being created.

The Cortex-M3 FreeRTOS-MPU port defines

portNUM_CONFIGURABLE_REGIONS to be 3. Three regions can be

defined when the task is created. The regions can be redefined at run time

using the vTaskAllocateMPURegions() function.

The pvBaseAddress and ulLengthInBytes members are self explanatory as

the start of the memory region and the length of the memory region

respectively. ulParameters defines how the task is permitted to access the

memory region being defined, and can take the bitwise OR of the following

values:

• portMPU_REGION_READ_WRITE

• portMPU_REGION_PRIVILEGED_READ_ONLY

• portMPU_REGION_READ_ONLY

• portMPU_REGION_PRIVILEGED_READ_WRITE

• portMPU_REGION_CACHEABLE_BUFFERABLE

• portMPU_REGION_EXECUTE_NEVER

48

Example

/* Declare the stack that will be used by the protected task being created. The stack alignment
must match its size, and be a power of 2. So, if 128 words are reserved for the stack then it
must be aligned on a (128 * 4) byte boundary. This example uses GCC syntax. */
static portSTACK_TYPE xTaskStack[128] __attribute__((aligned(128*4)));

/* Declare an array that will be accessed by the protected task being created. The task should
only be able to read from the array, and not write to it. */
char cReadOnlyArray[512] __attribute__((aligned(512)));

/* Fill in a TaskParameters_t structure to define the task - this is the structure passed to the
xTaskCreateRestricted() function. */
static const TaskParameters_t xTaskDefinition =
{
 vTaskFunction, /* pvTaskCode */
 "A task", /* pcName */
 128, /* usStackDepth - defined in words, not bytes. */
 NULL, /* pvParameters */
 1, /* uxPriority - priority 1, start in User mode. */
 xTaskStack, /* puxStackBuffer - the array to use as the task stack. */

 /* xRegions - In this case only one of the three user definable regions is actually used.
 The parameters are used to set the region to read only. */
 {
 /* Base address Length Parameters */
 { cReadOnlyArray, 512, portMPU_REGION_READ_ONLY },
 { 0, 0, 0 },
 { 0, 0, 0 },
 }
};

void main(void)
{
 /* Create the task defined by xTaskDefinition. NULL is used as the second parameter as a
 task handle is not required. */
 xTaskCreateRestricted(&xTaskDefinition, NULL);

 /* Start the scheduler. */
 vTaskStartScheduler();

 /* Should not reach here! */
}

Listing 20 Example use of xTaskCreateRestricted()

 49

2.10 vTaskDelay()

#include “FreeRTOS.h”
#include “task.h”

void vTaskDelay(TickType_t xTicksToDelay);

Listing 21 vTaskDelay() function prototype

Summary

Places the task that calls vTaskDelay() into the Blocked state for a fixed number of tick

interrupts.

Specifying a delay period of zero ticks will not result in the calling task being placed into the

Blocked state, but will result in the calling task yielding to any Ready state tasks that share its

priority. Calling vTaskDelay(0) is equivalent to calling taskYIELD().

Parameters

xTicksToDelay The number of tick interrupts that the calling task will remain in the Blocked

state before being transitioned back into the Ready state. For example, if a

task called vTaskDelay(100) when the tick count was 10,000, then it would

immediately enter the Blocked state and remain in the Blocked state until the

tick count reached 10,100.

Any time that remains between vTaskDelay() being called, and the next tick

interrupt occurring, counts as one complete tick period. Therefore, the

highest time resolution that can be achieved when specifying a delay period

is, in the worst case, equal to one complete tick interrupt period.

The macro pdMS_TO_TICKS() can be used to convert milliseconds into ticks.

This is demonstrated in the example in this section.

Return Values

None.

50

Notes

INCLUDE_vTaskDelay must be set to 1 in FreeRTOSConfig.h for the vTaskDelay() API
function to be available.

Example

void vAnotherTask(void * pvParameters)
{
 for(;;)
 {
 /* Perform some processing here. */

 …

 /* Enter the Blocked state for 20 tick interrupts – the actual time spent
 in the Blocked state is dependent on the tick frequency. */
 vTaskDelay(20);

 /* 20 ticks will have passed since the first call to vTaskDelay() was
 executed. */

 /* Enter the Blocked state for 20 milliseconds. Using the
 pdMS_TO_TICKS() macro means the tick frequency can change without
 effecting the time spent in the blocked state (other than due to the
 resolution of the tick frequency). */
 vTaskDelay(pdMS_TO_TICKS(20));
 }
}

Listing 22 Example use of vTaskDelay()

 51

2.11 vTaskDelayUntil()

#include “FreeRTOS.h”
#include “task.h”

void vTaskDelayUntil(TickType_t *pxPreviousWakeTime, TickType_t xTimeIncrement);

Listing 23 vTaskDelayUntil() function prototype

Summary

Places the task that calls vTaskDelayUntil() into the Blocked state until an absolute time is

reached.

Periodic tasks can use vTaskDelayUntil() to achieve a constant execution frequency.

Differences Between vTaskDelay() and vTaskDelayUntil()

vTaskDelay() results in the calling task entering into the Blocked state, and then remaining in

the Blocked state, for the specified number of ticks from the time vTaskDelay() was called.

The time at which the task that called vTaskDelay() exits the Blocked state is relative to when

vTaskDelay() was called.

vTaskDelayUntil() results in the calling task entering into the Blocked state, and then

remaining in the Blocked state, until an absolute time has been reached. The task that called

vTaskDelayUntil() exits the Blocked state exactly at the specified time, not at a time that is

relative to when vTaskDelayUntil() was called.

Parameters

pxPreviousWakeTime This parameter is named on the assumption that vTaskDelayUntil() is

being used to implement a task that executes periodically and with a

fixed frequency. In this case pxPreviousWakeTime holds the time at

which the task last left the Blocked state (was ‘woken’ up). This time

is used as a reference point to calculate the time at which the task

should next leave the Blocked state.

The variable pointed to by pxPreviousWakeTime is updated

automatically within the vTaskDelayUntil() function; it would not

52

normally be modified by the application code, other than when the

variable is first initialized. The example in this section demonstrates

how the initialization is performed.

xTimeIncrement This parameter is also named on the assumption that

vTaskDelayUntil() is being used to implement a task that executes

periodically and with a fixed frequency – the frequency being set by

the xTimeIncrement value.

xTimeIncrement is specified in ‘ticks’. The pdMS_TO_TICKS() macro

can be used to convert milliseconds to ticks.

Return Values

None.

Notes

INCLUDE_vTaskDelayUntil must be set to 1 in FreeRTOSConfig.h for the vTaskDelay() API

function to be available.

 53

Example

/* Define a task that performs an action every 50 milliseconds. */
void vCyclicTaskFunction(void * pvParameters)
{
TickType_t xLastWakeTime;
const TickType_t xPeriod = pdMS_TO_TICKS(50);

 /* The xLastWakeTime variable needs to be initialized with the current tick
 count. Note that this is the only time the variable is written to explicitly.
 After this assignment, xLastWakeTime is updated automatically internally within
 vTaskDelayUntil(). */
 xLastWakeTime = xTaskGetTickCount();

 /* Enter the loop that defines the task behavior. */
 for(;;)
 {
 /* This task should execute every 50 milliseconds. Time is measured
 in ticks. The pdMS_TO_TICKS macro is used to convert milliseconds
 into ticks. xLastWakeTime is automatically updated within vTaskDelayUntil()
 so is not explicitly updated by the task. */
 vTaskDelayUntil(&xLastWakeTime, xPeriod);

 /* Perform the periodic actions here. */
 }
}

Listing 24 Example use of vTaskDelayUntil()

54

2.12 vTaskDelete()

#include “FreeRTOS.h”
#include “task.h”

void vTaskDelete(TaskHandle_t pxTask);

Listing 25 vTaskDelete() function prototype

Summary

Deletes an instance of a task that was previously created using a call to xTaskCreate() or

xTaskCreateStatic().

Deleted tasks no longer exist so cannot enter the Running state.

Do not attempt to use a task handle to reference a task that has been deleted.

When a task is deleted, it is the responsibility of the idle task to free the memory that had been

used to hold the deleted task’s stack and data structures (task control block). Therefore, if an

application makes use of the vTaskDelete() API function, it is vital that the application also

ensures the idle task is not starved of processing time (the idle task must be allocated time in

the Running state).

Only memory that is allocated to a task by the kernel itself is automatically freed when a task is

deleted. Memory, or any other resource, that the application (rather than the kernel) allocates

to a task must be explicitly freed by the application when the task is deleted.

Parameters

pxTask The handle of the task being deleted (the subject task).

To obtain a task’s handle create the task using xTaskCreate() and make use of the

pxCreatedTask parameter, or create the task using xTaskCreateStatic() and store

the returned value, or use the task’s name in a call to xTaskGetHandle().

A task can delete itself by passing NULL in place of a valid task handle.

Return Values

None.

 55

Example

void vAnotherFunction(void)
{
TaskHandle_t xHandle;

 /* Create a task, storing the handle to the created task in xHandle. */
 if(
 xTaskCreate(
 vTaskCode,
 "Demo task",
 STACK_SIZE,
 NULL,
 PRIORITY,
 &xHandle /* The address of xHandle is passed in as the
 last parameter to xTaskCreate() to obtain a handle
 to the task being created. */
)
 != pdPASS)
 {
 /* The task could not be created because there was not enough FreeRTOS heap
 memory available for the task data structures and stack to be allocated. */
 }
 else
 {
 /* Delete the task just created. Use the handle passed out of xTaskCreate()
 to reference the subject task. */
 vTaskDelete(xHandle);
 }

 /* Delete the task that called this function by passing NULL in as the
 vTaskDelete() parameter. The same task (this task) could also be deleted by
 passing in a valid handle to itself. */
 vTaskDelete(NULL);
}

Listing 26 Example use of the vTaskDelete()

56

2.13 taskDISABLE_INTERRUPTS()

#include “FreeRTOS.h”
#include “task.h”

void taskDISABLE_INTERRUPTS(void);

Listing 27 taskDISABLE_INTERRUPTS() macro prototype

Summary

If the FreeRTOS port being used does not make use of the

configMAX_SYSCALL_INTERRUPT_PRIORITY (or

configMAX_API_CALL_INTERRUPT_PRIORITY, depending on the port) kernel configuration

constant, then calling taskDISABLE_INTERRUPTS() will leave interrupts globally disabled.

If the FreeRTOS port being used does make use of the

configMAX_SYSCALL_INTERRUPT_PRIORITY kernel configuration constant, then calling

taskDISABLE_INTERRUPTS() will leave interrupts at and below the interrupt priority set by

configMAX_SYSCALL_INTERRUPT_PRIORITY disabled, and all higher priority interrupt

enabled.

configMAX_SYSCALL_INTERRUPT_PRIORITY is normally defined in FreeRTOSConfig.h.

Calls to taskDISABLE_INTERRUPTS() and taskENABLE_INTERRUPTS() are not designed to

nest. For example, if taskDISABLE_INTERRUPTS() is called twice, a single call to

taskENABLE_INTERRUPTS() will still result in interrupts becoming enabled. If nesting is

required then use taskENTER_CRITICAL() and taskEXIT_CRITICAL() in place of

taskDISABLE_INTERRUPTS() and taskENABLE_INTERRUPTS() respectively.

Some FreeRTOS API functions use critical sections that will re-enable interrupts if the critical

section nesting count is zero – even if interrupts were disabled by a call to

taskDISABLE_INTERRUPTS() before the API function was called. It is not recommended to

call FreeRTOS API functions when interrupts have already been disabled.

Parameters

None.

 57

Return Values

None.

58

2.14 taskENABLE_INTERRUPTS()

#include “FreeRTOS.h”
#include “task.h”

void taskENABLE_INTERRUPTS(void);

Listing 28 taskENABLE_INTERRUPTS() macro prototype

Summary

Calling taskENABLE_INTERRUPTS() will result in all interrupt priorities being enabled.

Calls to taskDISABLE_INTERRUPTS() and taskENABLE_INTERRUPTS() are not designed to

nest. For example, if taskDISABLE_INTERRUPTS() is called twice a single call to

taskENABLE_INTERRUPTS() will still result in interrupts becoming enabled. If nesting is

required then use taskENTER_CRITICAL() and taskEXIT_CRITICAL() in place of

taskDISABLE_INTERRUPTS() and taskENABLE_INTERRUPTS() respectively.

Some FreeRTOS API functions use critical sections that will re-enable interrupts if the critical

section nesting count is zero – even if interrupts were disabled by a call to

taskDISABLE_INTERRUPTS() before the API function was called. It is not recommended to

call FreeRTOS API functions when interrupts have already been disabled.

Parameters

None.

Return Values

None.

 59

2.15 taskENTER_CRITICAL()

#include “FreeRTOS.h”
#include “task.h”

void taskENTER_CRITICAL(void);

Listing 29 taskENTER_CRITICAL macro prototype

Summary

Critical sections are entered by calling taskENTER_CRITICAL(), and subsequently exited by

calling taskEXIT_CRITICAL().

taskENTER_CRITICAL() must not be called from an interrupt service routine. See

taskENTER_CRITICAL_FROM_ISR() for an interrupt safe equivalent.

The taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros provide a basic critical

section implementation that works by simply disabling interrupts, either globally, or up to a

specific interrupt priority level. See the vTaskSuspendAll() API function for information on

creating a critical section without disabling interrupts.

If the FreeRTOS port being used does not make use of the

configMAX_SYSCALL_INTERRUPT_PRIORITY kernel configuration constant, then calling

taskENTER_CRITICAL() will leave interrupts globally disabled.

If the FreeRTOS port being used does make use of the

configMAX_SYSCALL_INTERRUPT_PRIORITY (or

configMAX_API_CALL_INTERRUPT_PRIORITY, depending on the port) kernel configuration

constant, then calling taskENTER_CRITICAL() will leave interrupts at and below the interrupt

priority set by configMAX_SYSCALL_INTERRUPT_PRIORITY disabled, and all higher priority

interrupt enabled.

Preemptive context switches only occur inside an interrupt, so will not occur when interrupts

are disabled. Therefore, the task that called taskENTER_CRITICAL() is guaranteed to remain

in the Running state until the critical section is exited, unless the task explicitly attempts to

block or yield (which it should not do from inside a critical section).

60

Calls to taskENTER_CRITICAL() and taskEXIT_CRITICAL() are designed to nest. Therefore,

a critical section will only be exited when one call to taskEXIT_CRITICAL() has been executed

for every preceding call to taskENTER_CRITICAL().

Critical sections must be kept very short, otherwise they will adversely affect interrupt

response times. Every call to taskENTER_CRITICAL() must be closely paired with a call to

taskEXIT_CRITICAL().

FreeRTOS API functions must not be called from within a critical section.

Parameters

None.

Return Values

None.

 61

Example

/* A function that makes use of a critical section. */
void vDemoFunction(void)
{
 /* Enter the critical section. In this example, this function is itself called
 from within a critical section, so entering this critical section will result
 in a nesting depth of 2. */
 taskENTER_CRITICAL();

 /* Perform the action that is being protected by the critical section here. */

 /* Exit the critical section. In this example, this function is itself called
 from a critical section, so this call to taskEXIT_CRITICAL() will decrement the
 nesting count by one, but not result in interrupts becoming enabled. */
 taskEXIT_CRITICAL();
}

/* A task that calls vDemoFunction() from within a critical section. */
void vTask1(void * pvParameters)
{
 for(;;)
 {
 /* Perform some functionality here. */

 /* Call taskENTER_CRITICAL() to create a critical section. */
 taskENTER_CRITICAL();

 /* Execute the code that requires the critical section here. */

 /* Calls to taskENTER_CRITICAL() can be nested so it is safe to call a
 function that includes its own calls to taskENTER_CRITICAL() and
 taskEXIT_CRITICAL(). */
 vDemoFunction();

 /* The operation that required the critical section is complete so exit the
 critical section. After this call to taskEXIT_CRITICAL(), the nesting depth
 will be zero, so interrupts will have been re-enabled. */
 taskEXIT_CRITICAL();
 }
}

Listing 30 Example use of taskENTER_CRITICAL() and taskEXIT_CRITICAL()

62

2.16 taskENTER_CRITICAL_FROM_ISR()

#include “FreeRTOS.h”
#include “task.h”

UBaseType_t taskENTER_CRITICAL_FROM_ISR(void);

Listing 31 taskENTER_CRITICAL_FROM_ISR() macro prototype

Summary

A version of taskENTER_CRITICAL() that can be used in an interrupt service routine (ISR).

In an ISR critical sections are entered by calling taskENTER_CRITICAL_FROM_ISR(), and

subsequently exited by calling taskEXIT_CRITICAL_FROM_ISR().

The taskENTER_CRITICAL_FROM_ISR() and taskEXIT_CRITICAL_FROM_ISR() macros

provide a basic critical section implementation that works by simply disabling interrupts, either

globally, or up to a specific interrupt priority level.

If the FreeRTOS port being used supports interrupt nesting then calling

taskENTER_CRITICAL_FROM_ISR() will disable interrupts at and below the interrupt priority

set by the configMAX_SYSCALL_INTERRUPT_PRIORITY (or

configMAX_API_CALL_INTERRUPT_PRIORITY) kernel configuration constant, and leave all

other interrupt priorities enabled. If the FreeRTOS port being used does not support interrupt

nesting then taskENTER_CRITICAL_FROM_ISR() and taskEXIT_CRITICAL_FROM_ISR() will

have no effect.

Calls to taskENTER_CRITICAL_FROM_ISR() and taskEXIT_CRITICAL_FROM_ISR() are

designed to nest, but the semantics of how the macros are used is different to the

taskENTER_CRITICAL() and taskEXIT_CRITICAL() equivalents.

Critical sections must be kept very short, otherwise they will adversely affect the response

times of higher priority interrupts that would otherwise nest. Every call to

taskENTER_CRITICAL_FROM_ISR() must be closely paired with a call to

taskEXIT_CRITICAL_FROM_ISR().

FreeRTOS API functions must not be called from within a critical section.

 63

Parameters

None.

Return Values

The interrupt mask state at the time taskENTER_CRITICAL_FROM_ISR() is called is returned.

The return value must be saved so it can be passed into the matching call to

taskEXIT_CRITICAL_FROM_ISR().

Example

/* A function called from an ISR. */
void vDemoFunction(void)
{
UBaseType_t uxSavedInterruptStatus;

 /* Enter the critical section. In this example, this function is itself called from
 within a critical section, so entering this critical section will result in a nesting
 depth of 2. Save the value returned by taskENTER_CRITICAL_FROM_ISR() into a local
 stack variable so it can be passed into taskEXIT_CRITICAL_FROM_ISR(). */
 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();

 /* Perform the action that is being protected by the critical section here. */

 /* Exit the critical section. In this example, this function is itself called from a
 critical section, so interrupts will have already been disabled before a value was
 stored in uxSavedInterruptStatus, and therefore passing uxSavedInterruptStatus into
 taskEXIT_CRITICAL_FROM_ISR() will not result in interrupts being re-enabled. */
 taskEXIT_CRITICAL_FROM_ISR(uxSavedInterruptStatus);
}

/* A task that calls vDemoFunction() from within an interrupt service routine. */
void vDemoISR(void)
{
UBaseType_t uxSavedInterruptStatus;

 /* Call taskENTER_CRITICAL_FROM_ISR() to create a critical section, saving the
 returned value into a local stack. */
 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();

 /* Execute the code that requires the critical section here. */

 /* Calls to taskENTER_CRITICAL_FROM_ISR() can be nested so it is safe to call a
 function that includes its own calls to taskENTER_CRITICAL_FROM_ISR() and
 taskEXIT_CRITICAL_FROM_ISR(). */
 vDemoFunction();

 /* The operation that required the critical section is complete so exit the
 critical section. Assuming interrupts were enabled on entry to this ISR, the value
 saved in uxSavedInterruptStatus will result in interrupts being re-enabled.*/
 taskEXIT_CRITICAL_FROM_ISR(uxSavedInterruptStatus);
}

Listing 32 Example use of taskENTER_CRITICAL_FROM_ISR() and
taskEXIT_CRITICAL_FROM_ISR()

64

2.17 taskEXIT_CRITICAL()

#include “FreeRTOS.h”
#include “task.h”

void taskEXIT_CRITICAL(void);

Listing 33 taskEXIT_CRITICAL() macro prototype

Summary

Critical sections are entered by calling taskENTER_CRITICAL(), and subsequently exited by

calling taskEXIT_CRITICAL().

taskEXIT_CRITICAL() must not be called from an interrupt service routine. See

taskEXIT_CRITICAL_FROM_ISR() for an interrupt safe equivalent.

The taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros provide a basic critical

section implementation that works by simply disabling interrupts, either globally or up to a

specific interrupt priority level.

If the FreeRTOS port being used does not make use of the

configMAX_SYSCALL_INTERRUPT_PRIORITY kernel configuration constant, then calling

taskENTER_CRITICAL() will leave interrupts globally disabled.

If the FreeRTOS port being used does make use of the

configMAX_SYSCALL_INTERRUPT_PRIORITY kernel configuration constant, then calling

taskENTER_CRITICAL() will leave interrupts at and below the interrupt priority set by

configMAX_SYSCALL_INTERRUPT_PRIORITY disabled, and all higher priority interrupt

enabled.

Preemptive context switches only occur inside an interrupt, so will not occur when interrupts

are disabled. Therefore, the task that called taskENTER_CRITICAL() is guaranteed to remain

in the Running state until the critical section is exited, unless the task explicitly attempts to

block or yield (which it should not do from inside a critical section).

Calls to taskENTER_CRITICAL() and taskEXIT_CRITICAL() are designed to nest. Therefore,

a critical section will only be exited when one call to taskEXIT_CRITICAL() has been executed

for every preceding call to taskENTER_CRITICAL().

 65

Critical sections must be kept very short otherwise they will adversely affect interrupt response

times. Every call to taskENTER_CRITICAL() must be closely paired with a call to

taskEXIT_CRITICAL().

FreeRTOS API functions must not be called from within a critical section.

Parameters

None.

Return Values

None.

Example

See Listing 30.

66

2.18 taskEXIT_CRITICAL_FROM_ISR()

#include “FreeRTOS.h”
#include “task.h”

void taskENTER_CRITICAL_FROM_ISR(UBaseType_t uxSavedInterruptStatus);

Listing 34 taskEXIT_CRITICAL_FROM_ISR() macro prototype

Summary

Exits a critical section that was entered by calling taskENTER_CRITICAL_FROM_ISR().

In an ISR, critical sections are entered by calling taskENTER_CRITICAL_FROM_ISR(), and

subsequently exited by calling taskEXIT_CRITICAL_FROM_ISR().

The taskENTER_CRITICAL_FROM_ISR() and taskEXIT_CRITICAL_FROM_ISR() macros

provide a basic critical section implementation that works by simply disabling interrupts, either

globally or up to a specific interrupt priority level.

If the FreeRTOS port being used supports interrupt nesting then calling

taskENTER_CRITICAL_FROM_ISR() will disable interrupts at and below the interrupt priority

set by the configMAX_SYSCALL_INTERRUPT_PRIORITY (or

configMAX_API_CALL_INTERRUPT_PRIORITY) kernel configuration constant, and leave all

other interrupt priorities enabled. If the FreeRTOS port being used does not support interrupt

nesting then taskENTER_CRITICAL_FROM_ISR() and taskEXIT_CRITICAL_FROM_ISR() will

have no effect.

Calls to taskENTER_CRITICAL_FROM_ISR() and taskEXIT_CRITICAL_FROM_ISR() are

designed to nest, but the semantics of how the macros are used is different to the

taskENTER_CRITICAL() and taskEXIT_CRITICAL() equivalents.

Critical sections must be kept very short, otherwise they will adversely affect the response

times of higher priority interrupts that would otherwise nest. Every call to

taskENTER_CRITICAL_FROM_ISR() must be closely paired with a call to

taskEXIT_CRITICAL_FROM_ISR().

FreeRTOS API functions must not be called from within a critical section.

 67

Parameters

uxSavedInterruptStatus The value returned from the matching call to

taskENTER_CRITICAL_FROM_ISR() must be used as the

uxSavedInterruptStatus value.

Return Values

None.

Example

See Listing 32.

68

2.19 xTaskGetApplicationTaskTag()

#include “FreeRTOS.h”
#include “task.h”

TaskHookFunction_t xTaskGetApplicationTaskTag(TaskHandle_t xTask);

Listing 35 xTaskGetApplicationTaskTag() function prototype

Summary

Returns the ‘tag’ value associated with a task. The meaning and use of the tag value is

defined by the application writer. The kernel itself will not normally access the tag value.

This function is intended for advanced users only.

Parameters

xTask The handle of the task being queried. This is the subject task.

A task can obtain its own tag value by either using its own task handle, or by using

NULL in place of a valid task handle.

Return Values

The ‘tag’ value of the task being queried.

Notes

The tag value can be used to hold a function pointer. When this is done the function assigned

to the tag value can be called using the xTaskCallApplicationTaskHook() API function. This

technique is in effect assigning a callback function to the task. It is common for such a

callback to be used in combination with the traceTASK_SWITCHED_IN() macro to implement

an execution trace feature.

configUSE_APPLICATION_TASK_TAG must be set to 1 in FreeRTOSConfig.h for

xTaskGetApplicationTaskTag() to be available.

 69

Example

/* In this example, an integer is set as the task tag value. */
void vATask(void *pvParameters)
{
 /* Assign a tag value of 1 to the currently executing task. The (void *) cast
 is used to prevent compiler warnings. */
 vTaskSetApplicationTaskTag(NULL, (void *) 1);

 for(;;)
 {
 /* Rest of task code goes here. */
 }
}

void vAFunction(void)
{
TaskHandle_t xHandle;
long lReturnedTaskHandle;

 /* Create a task from the vATask() function, storing the handle to the created
 task in the xTask variable. */

 /* Create the task. */
 if(xTaskCreate(
 vATask, /* Pointer to the function that implements the task. */
 "Demo task", /* Text name given to the task. */
 STACK_SIZE, /* The size of the stack that should be created for the task.
 This is defined in words, not bytes. */
 NULL, /* The task does not use the parameter. */
 TASK_PRIORITY, /* The priority to assign to the newly created task. */
 &xHandle /* The handle to the task being created will be placed in
 xHandle. */
) == pdPASS)
 {
 /* The task was created successfully. Delay for a short period to allow
 the task to run. */
 vTaskDelay(100);

 /* What tag value is assigned to the task? The returned tag value is
 stored in an integer, so cast to an integer to prevent compiler warnings. */
 lReturnedTaskHandle = (long) xTaskGetApplicationTaskTag(xHandle);
 }
}

Listing 36 Example use of xTaskGetApplicationTaskTag()

70

2.20 xTaskGetCurrentTaskHandle()

#include “FreeRTOS.h”
#include “task.h”

TaskHandle_t xTaskGetCurrentTaskHandle(void);

Listing 37 xTaskGetCurrentTaskHandle() function prototype

Summary

Returns the handle of the task that is in the Running state – which will be the handle of the

task that called xTaskGetCurrentTaskHandle().

Parameters

None.

Return Values

The handle of the task that called xTaskGetCurrentTaskHandle().

Notes

INCLUDE_xTaskGetCurrentTaskHandle must be set to 1 in FreeRTOSConfig.h for

xTaskGetCurrentTaskHandle() to be available.

 71

2.21 xTaskGetIdleTaskHandle()

#include “FreeRTOS.h”
#include “task.h”

TaskHandle_t xTaskGetIdleTaskHandle(void);

Listing 38 xTaskGetIdleTaskHandle() function prototype

Summary

Returns the task handle associated with the Idle task. The Idle task is created automatically

when the scheduler is started.

Parameters

None.

Return Values

The handle of the Idle task.

Notes

INCLUDE_xTaskGetIdleTaskHandle must be set to 1 in FreeRTOSConfig.h for

xTaskGetIdleTaskHandle() to be available.

72

2.22 xTaskGetHandle()

#include “FreeRTOS.h”
#include “task.h”

TaskHandle_t xTaskGetHandle(const char *pcNameToQuery);

Listing 39 xTaskGetHandle() function prototype

Summary

Tasks are created using xTaskCreate() or xTaskCreateStatic(). Both functions have a

parameter called pcName that is used to assign a human readable text name to the task being

created. xTaskGetHandle() looks up and returns a task’s handle from the task’s human

readable text name.

Parameters

pcNameToQuery The name of the task being queried. The name is specified as a standard

NULL terminated C string.

Return Values

If a task has the exact same name as specified by the pcNameToQuery parameter then the

handle of the task will be returned. If no tasks have the name specified by the

pcNameToQuery parameter then NULL is returned.

Notes

xTaskGetHandle() can take a relatively long time to complete. It is therefore recommended

that xTaskGetHandle() is only used once for each task name – the task handle returned by

xTaskGetHandle() can then be stored for later re-use.

The behavior of xTaskGetHandle() is undefined in there is more than one task that has the

same name.

INCLUDE_xTaskGetHandle must be set to 1 in FreeRTOSConfig.h for xTaskGetHandle() to be
available.

 73

Example

void vATask(void *pvParameters)
{
const char *pcNameToLookup = "MyTask";
TaskHandle_t xHandle;

 /* Find the handle of the task that has the name MyTask, storing the returned handle locally
 so it can be re-used later. */
 xHandle = xTaskGetHandle(pcNameToLookup);

 if(xHandle != NULL)
 {
 /* The handle of the task was found, and can now be used in any other FreeRTOS API
 function that takes a TaskHandle_t parameter. */
 }

 for(;;)
 {
 /* The rest of the task code goes here. */
 }
}

Listing 40 Example use of xTaskGetHandle()

74

2.23 uxTaskGetNumberOfTasks()

#include “FreeRTOS.h”
#include “task.h”

UBaseType_t uxTaskGetNumberOfTasks(void);

Listing 41 uxTaskGetNumberOfTasks() function prototype

Summary

Returns the total number of tasks that exist at the time uxTaskGetNumberOfTasks() is called.

Parameters

None.

Return Values

The value returned is the total number of tasks that are under the control of the FreeRTOS

kernel at the time uxTaskGetNumberOfTasks() is called. This is the number of Suspended

state tasks, plus the number of Blocked state tasks, plus the number of Ready state tasks,

plus the idle task, plus the Running state task.

 75

2.24 vTaskGetRunTimeStats()

#include “FreeRTOS.h”
#include “task.h”

void vTaskGetRunTimeStats(char *pcWriteBuffer);

Listing 42 vTaskGetRunTimeStats() function prototype

Summary

FreeRTOS can be configured to collect task run time statistics. Task run time statistics

provide information on the amount of processing time each task has received. Figures are

provided as both an absolute time and a percentage of the total application run time. The

vTaskGetRunTimeStats() API function formats the collected run time statistics into a human

readable table. Columns are generated for the task name, the absolute time allocated to that

task, and the percentage of the total application run time allocated to that task. A row is

generated for each task in the system, including the Idle task. An example output is shown in

Figure 1.

Figure 1 An example of the table produced by calling vTaskGetRunTimeStats()

Parameters

pcWriteBuffer A pointer to a character buffer into which the formatted and human readable

table is written. The buffer must be large enough to hold the entire table, as

no boundary checking is performed.

76

Return Values

None.

Notes

vTaskGetRunTimeStats() is a utility function that is provided for convenience only. It is not

considered part of the kernel. vTaskGetRunTimeStats() obtains its raw data using the

xTaskGetSystemState() API function.

configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS

must both be set to 1 in FreeRTOSConfig.h for vTaskGetRunTimeStats() to be available.

Setting configGENERATE_RUN_TIME_STATS will also require the application to define the

following macros:

portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() This macro must be provided to

initialize whichever peripheral is

used to generate the time base.

The time base used by the run time

stats must have a higher resolution

than the tick interrupt, otherwise the

gathered statistics may be too

inaccurate to be truly useful. It is

recommended to make the time

base between 10 and 20 times

faster than the tick interrupt

 77

portGET_RUN_TIME_COUNTER_VALUE(), or

portALT_GET_RUN_TIME_COUNTER_VALUE(Time)

One of these two macros must be

provided to return the current time

base value – which is the total time

that the application has been

running in the chosen time base

units. If the first macro is used it

must be defined to evaluate to the

current time base value. If the

second macro is used it must be

defined to set its ‘Time’ parameter to

the current time base value.

These macros can be defined in FreeRTOSConfig.h.

Example

/* The LM3Sxxxx Eclipse demo application already includes a 20KHz timer interrupt.
The interrupt handler was updated to simply increment a variable called
ulHighFrequencyTimerTicks each time it executed.
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() then sets this variable to 0 and
portGET_RUN_TIME_COUNTER_VALUE() returns its value. To implement this the following
few lines are added to FreeRTOSConfig.h. */

extern volatile unsigned long ulHighFrequencyTimerTicks;

/* ulHighFrequencyTimerTicks is already being incremented at 20KHz. Just set
its value back to 0. */
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() (ulHighFrequencyTimerTicks = 0UL)

/* Simply return the high frequency counter value. */
#define portGET_RUN_TIME_COUNTER_VALUE() ulHighFrequencyTimerTicks

Listing 43 Example macro definitions, taken from the LM3Sxxx Eclipse Demo

78

/* The LPC17xx demo application does not include the high frequency interrupt test,
so portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() is used to configure the timer 0
peripheral to generate the time base. portGET_RUN_TIME_COUNTER_VALUE() simply returns
the current timer 0 counter value. This was implemented using the following functions
and macros. */

/* Defined in main.c. */
void vConfigureTimerForRunTimeStats(void)
{
const unsigned long TCR_COUNT_RESET = 2,
 CTCR_CTM_TIMER = 0x00,
 TCR_COUNT_ENABLE = 0x01;

 /* Power up and feed the timer with a clock. */
 PCONP |= 0x02UL;
 PCLKSEL0 = (PCLKSEL0 & (~(0x3<<2))) | (0x01 << 2);

 /* Reset Timer 0 */
 T0TCR = TCR_COUNT_RESET;

 /* Just count up. */
 T0CTCR = CTCR_CTM_TIMER;

 /* Prescale to a frequency that is good enough to get a decent resolution,
 but not too fast so as to overflow all the time. */
 T0PR = (configCPU_CLOCK_HZ / 10000UL) - 1UL;

 /* Start the counter. */
 T0TCR = TCR_COUNT_ENABLE;
}

/* Defined in FreeRTOSConfig.h. */
extern void vConfigureTimerForRunTimeStats(void);
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() vConfigureTimerForRunTimeStats()
#define portGET_RUN_TIME_COUNTER_VALUE() T0TC

Listing 44 Example macro definitions, taken from the LPC17xx Eclipse Demo

void vAFunction(void)
{
/* Define a buffer that is large enough to hold the generated table. In most cases
the buffer will be too large to allocate on the stack, hence in this example it is
declared static. */
static char cBuffer[BUFFER_SIZE];

 /* Pass the buffer into vTaskGetRunTimeStats() to generate the table of data. */
 vTaskGetRunTimeStats(cBuffer);

 /* The generated information can be saved or viewed here. */
}

Listing 45 Example use of vTaskGetRunTimeStats()

 79

2.25 xTaskGetSchedulerState()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskGetSchedulerState(void);

Listing 46 xTaskGetSchedulerState() function prototype

Summary

Returns a value that indicates the state the scheduler is in at the time

xTaskGetSchedulerState() is called.

Parameters

None.

Return Values

taskSCHEDULER_NOT_STARTED This value will only be returned when

xTaskGetSchedulerState() is called before

vTaskStartScheduler() has been called.

taskSCHEDULER_RUNNING Returned if vTaskStartScheduler() has already been

called, provided the scheduler is not in the Suspended

state.

taskSCHEDULER_SUSPENDED Returned when the scheduler is in the Suspended sate

because vTaskSuspendAll() was called.

Notes

INCLUDE_xTaskGetSchedulerState must be set to 1 in FreeRTOSConfig.h for

xTaskGetSchedulerState() to be available.

80

2.26 uxTaskGetStackHighWaterMark()

#include “FreeRTOS.h”
#include “task.h”

UBaseType_t uxTaskGetStackHighWaterMark(TaskHandle_t xTask);

Summary

Each task maintains its own stack, the total size of which is specified when the task is created.

uxTaskGetStackHighWaterMark() is used to query how close a task has come to overflowing

the stack space allocated to it. This value is called the stack 'high water mark'.

Parameters

xTask The handle of the task whose stack high water mark is being queried (the subject

task).

To obtain a task’s handle create the task using xTaskCreate() and make use of the

pxCreatedTask parameter, or create the task using xTaskCreateStatic() and store the

returned value, or use the task’s name in a call to xTaskGetHandle().

A task can query its own stack high water mark by passing NULL in place of a valid

task handle.

Return Values

The amount of stack used by a task grows and shrinks as the task executes and interrupts are

processed. uxTaskGetStackHighWaterMark() returns the minimum amount of remaining stack

space that has been available since the task started executing. This is the amount of stack

that remained unused when stack usage was at its greatest (or deepest) value. The closer the

high water mark is to zero, the closer the task has come to overflowing its stack.

Notes

uxTaskGetStackHighWaterMark() can take a relatively long time to execute. It is therefore

recommended that its use is limited to test and debug builds.

 81

INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for

uxTaskGetStackHighWaterMark() to be available.

Example

void vTask1(void * pvParameters)
{
UBaseType_t uxHighWaterMark;

 /* Inspect the high water mark of the calling task when the task starts to
 execute. */
 uxHighWaterMark = uxTaskGetStackHighWaterMark(NULL);

 for(;;)
 {
 /* Call any function. */
 vTaskDelay(1000);

 /* Calling a function will have used some stack space, so it will be
 expected that uxTaskGetStackHighWaterMark() will return a lower value
 at this point than when it was called on entry to the task function. */
 uxHighWaterMark = uxTaskGetStackHighWaterMark(NULL);
 }
}

Listing 47 Example use of uxTaskGetStackHighWaterMark()

82

2.27 eTaskGetState()

#include “FreeRTOS.h”
#include “task.h”

eTaskState eTaskGetState(TaskHandle_t pxTask);

Listing 48 eTaskGetState() function prototype

Summary

Returns as an enumerated type the state in which a task existed at the time eTaskGetState()

was executed.

Parameters

pxTask The handle of the subject task.

To obtain a task’s handle create the task using xTaskCreate() and make use of the

pxCreatedTask parameter, or create the task using xTaskCreateStatic() and store

the returned value, or use the task’s name in a call to xTaskGetHandle().

Return Values

Table 1 lists the value that eTaskGetState() will return for each possible state that the task
referenced by the pxTask parameter can exist in.

Table 1. eTaskGetState() return values

State Return Value

Running eRunning (the task is querying its own state)

Ready eReady

Blocked eBlocked

Suspended eSuspended

Deleted eDeleted (the task’s structures are waiting to be cleaned up)

 83

Notes

INCLUDE_eTaskGetState must be set to 1 in FreeRTOSConfig.h for the eTaskGetState() API

function to be available.

84

2.28 uxTaskGetSystemState()

#include “FreeRTOS.h”
#include “task.h”

UBaseType_t uxTaskGetSystemState(TaskStatus_t * const pxTaskStatusArray,
 const UBaseType_t uxArraySize,
 unsigned long * const pulTotalRunTime);

Listing 49 uxTaskGetSystemState() function prototype

Summary

uxTaskGetSystemState() populates a TaskStatus_t structure for each task in the system. The

TaskStatus_t structure contains, among other things, the task’s handle, name, priority, state,

and total amount of run time consumed.

The TaskStatus_t structure is defined in Listing 51.

Parameters

pxTaskStatusArray A pointer to an array of TaskStatus_t structures. The array must contain

at least one TaskStatus_t structure for each task that is under the control

of the RTOS. The number of tasks under the control of the RTOS can be

determined using the uxTaskGetNumberOfTasks() API function.

uxArraySize The size of the array pointed to by the pxTaskStatusArray parameter.

The size is specified as the number of indexes in the array (the number

of TaskStatus_t structures contained in the array), not by the number of

bytes in the array.

pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in

FreeRTOSConfig.h then *pulTotalRunTime is set by

uxTaskGetSystemState() to the total run time (as defined by the run time

stats clock) since the target booted. pulTotalRunTime can be set to

NULL to omit the total run time value.

 85

Return Values

The number of TaskStatus_t structures that were populated by uxTaskGetSystemState(). This

should equal the number returned by the uxTaskGetNumberOfTasks() API function, but will be

zero if the value passed in the uxArraySize parameter was too small.

Notes

This function is intended for debugging use only as its use results in the scheduler remaining

suspended for an extended period.

To obtain information on a single task, rather than all the tasks in the system, use

vTaskGetTaskInfo() instead of uxTaskGetSystemState().

configUSE_TRACE_FACILITY must bet defined as 1 in FreeRTOSConfig.h for

uxTaskGetSystemState() to be available.

86

Example

/* This example demonstrates how a human readable table of run time stats
information is generated from raw data provided by uxTaskGetSystemState().
The human readable table is written to pcWriteBuffer. (see the vTaskList()
API function which actually does just this). */
void vTaskGetRunTimeStats(signed char *pcWriteBuffer)
{
TaskStatus_t *pxTaskStatusArray;
volatile UBaseType_t uxArraySize, x;
unsigned long ulTotalRunTime, ulStatsAsPercentage;

 /* Make sure the write buffer does not contain a string. */
 *pcWriteBuffer = 0x00;

 /* Take a snapshot of the number of tasks in case it changes while this
 function is executing. */
 uxArraySize = uxTaskGetNumberOfTasks();

 /* Allocate a TaskStatus_t structure for each task. An array could be
 allocated statically at compile time. */
 pxTaskStatusArray = pvPortMalloc(uxArraySize * sizeof(TaskStatus_t));

 if(pxTaskStatusArray != NULL)
 {
 /* Generate raw status information about each task. */
 uxArraySize = uxTaskGetSystemState(pxTaskStatusArray, uxArraySize, &ulTotalRunTime);

 /* For percentage calculations. */
 ulTotalRunTime /= 100UL;

 /* Avoid divide by zero errors. */
 if(ulTotalRunTime > 0)
 {
 /* For each populated position in the pxTaskStatusArray array,
 format the raw data as human readable ASCII data. */
 for(x = 0; x < uxArraySize; x++)
 {
 /* What percentage of the total run time has the task used?
 This will always be rounded down to the nearest integer.
 ulTotalRunTimeDiv100 has already been divided by 100. */
 ulStatsAsPercentage = pxTaskStatusArray[x].ulRunTimeCounter / ulTotalRunTime;

 if(ulStatsAsPercentage > 0UL)
 {
 sprintf(pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n",
 pxTaskStatusArray[x].pcTaskName,
 pxTaskStatusArray[x].ulRunTimeCounter,
 ulStatsAsPercentage);
 }
 else
 {
 /* If the percentage is zero here then the task has
 consumed less than 1% of the total run time. */
 sprintf(pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n",
 pxTaskStatusArray[x].pcTaskName,
 pxTaskStatusArray[x].ulRunTimeCounter);
 }

 pcWriteBuffer += strlen((char *) pcWriteBuffer);
 }
 }

 /* The array is no longer needed, free the memory it consumes. */
 vPortFree(pxTaskStatusArray);
 }
}

Listing 50 Example use of uxTaskGetSystemState()

 87

typedef struct xTASK_STATUS
{
 /* The handle of the task to which the rest of the information in the structure
 relates. */
 TaskHandle_t xHandle;

 /* A pointer to the task's name. This value will be invalid if the task was deleted
 since the structure was populated! */
 const signed char *pcTaskName;

 /* A number unique to the task. */
 UBaseType_t xTaskNumber;

 /* The state in which the task existed when the structure was populated. */
 eTaskState eCurrentState;

 /* The priority at which the task was running (may be inherited) when the structure
 was populated. */
 UBaseType_t uxCurrentPriority;

 /* The priority to which the task will return if the task's current priority has been
 inherited to avoid unbounded priority inversion when obtaining a mutex. Only valid
 if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
 UBaseType_t uxBasePriority;

 /* The total run time allocated to the task so far, as defined by the run time stats
 clock. Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in
 FreeRTOSConfig.h. */
 unsigned long ulRunTimeCounter;

 /* Points to the lowest address of the task's stack area. */
 StackType_t *pxStackBase;

 /* The minimum amount of stack space that has remained for the task since the task was
 created. The closer this value is to zero the closer the task has come to overflowing
 its stack. */
 unsigned short usStackHighWaterMark;

} TaskStatus_t;

Listing 51 The TaskStatus_t definition

88

2.29 vTaskGetTaskInfo()

#include “FreeRTOS.h”
#include “task.h”

void vTaskGetTaskInfo(TaskHandle_t xTask,
 TaskStatus_t *pxTaskStatus,
 BaseType_t xGetFreeStackSpace,
 eTaskState eState);

Listing 52 vTaskGetTaskInfo() function prototype

Summary

vTaskGetTaskInfo() populates a TaskStatus_t structure for a single task. The TaskStatus_t

structure contains, among other things, the task’s handle, name, priority, state, and total

amount of run time consumed.

The TaskStatus_t structure is defined in Listing 51.

Parameters

xTask The handle of the task being queried.

To obtain a task’s handle create the task using xTaskCreate() and

make use of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s

name in a call to xTaskGetHandle().

pxTaskStatus Must point to a variable of type TaskStatus_t, which will be filled with

information about the task being queried.

xGetFreeStackSpace The TaskStatus_t structure contains a member to report the stack high

water mark of the task being queried. The stack high water mark is the

minimum amount of stack space that has ever existed for the task, so

the closer the number is to zero, the closer the task has come to

overflowing its stack. Calculating the stack high water mark takes a

relatively long time, and can make the system temporarily

unresponsive – so the xGetFreeStackSpace parameter is provided to

allow the high water mark checking to be skipped. The high

 89

watermark value will only be written to the TaskStatus_t structure if

xGetFreeStackSpace is not set to pdFALSE.

eState The TaskStatus_t structure contains a member to report the state of

the task being queried. Obtaining the task state is not as fast as a

simple assignment – so the eState parameter is provided to allow the

state information to be omitted from the TaskStatus_t structure. To

obtain state information then set eState to eInvalid – otherwise the

value passed in eState will be reported as the task state in the

TaskStatus_t structure.

Notes

This function is intended for debugging use only as its use can potentially result in the

scheduler remaining suspended for an extended period.

To obtain a TaskStatus_t structure for all the tasks in the system use uxTaskGetSystemState()

in place of vTaskGetTaskInfo().

configUSE_TRACE_FACILITY must bet defined as 1 in FreeRTOSConfig.h for

uxTaskGetSystemState() to be available.

Example

void vAFunction(void)
{
TaskHandle_t xHandle;
TaskStatus_t xTaskDetails;

 /* Obtain the handle of a task from its name. */
 xHandle = xTaskGetHandle("Task_Name");

 /* Check the handle is not NULL. */
 configASSERT(xHandle);

 /* Use the handle to obtain further information about the task. */
 vTaskGetTaskInfo(/* The handle of the task being queried. */
 xHandle,
 /* The TaskStatus_t structure to complete with information on xHandle. */
 &xTaskDetails,
 /* Include the stack high water mark value in the TaskStatus_t
 structure. */
 pdTRUE,
 /* Include the task state in the TaskStatus_t structure. */
 eInvalid);
}

Listing 53 Example use of vTaskGetTaskInfo()

90

2.30 pvTaskGetThreadLocalStoragePointer()

#include “FreeRTOS.h”
#include “task.h”

void *pvTaskGetThreadLocalStoragePointer(TaskHandle_t xTaskToQuery,
 BaseType_t xIndex);

Listing 54 pvTaskGetThreadLocalStoragePointer() function prototype

Summary

Thread local storage (or TLS) allows the application writer to store values inside a task's

control block, making the value specific to (local to) the task itself, and allowing each task to

have its own unique value.

Each task has its own array of pointers that can be used as thread local storage. The number

of indexes in the array is set by the configNUM_THREAD_LOCAL_STORAGE_POINTERS

compile time configuration constant in FreeRTOSConfig.h.

pvTaskGetThreadLocalStoragePointer() reads a value from an index in the array, effectively

retrieving a thread local value.

Parameters

xTaskToQuery The handle of the task from which the thread local data is being read.

A task can read its own thread local data by using NULL as the parameter

value..

xIndex The index into the thread local storage array from which data is being read.

Return Values

The value read from the task’s thread local storage array at index xIndex.

 91

Example

uint32_t ulVariable;

/* Read the value stored in index 5 of the calling task's thread local storage
array into ulVariable. */
ulVariable = (uint32_t) pvTaskGetThreadLocalStoragePointer(NULL, 5);

Listing 55 Example use of pvTaskGetThreadLocalStoragePointer()

92

2.31 pcTaskGetName()

#include “FreeRTOS.h”
#include “task.h”

char * pcTaskGetName(TaskHandle_t xTaskToQuery);

Listing 56 pcTaskGetName() function prototype

Summary

Queries the human readable text name of a task. A text name is assigned to a task using the

pcName parameter of the xTaskCreate() or xTaskCreateStatic() API function call used to

create the task.

Parameters

xTaskToQuery The handle of the task being queried (the subject task).

To obtain a task’s handle create the task using xTaskCreate() and make use

of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s name in a

call to xTaskGetHandle().

A task may query its own name by passing NULL in place of a valid task

handle.

Return Values

Task names are standard NULL terminated C strings. The value returned is a pointer to the

subject task’s name.

 93

2.32 xTaskGetTickCount()

#include “FreeRTOS.h”
#include “task.h”

TickType_t xTaskGetTickCount(void);

Listing 57 xTaskGetTickCount() function prototype

Summary

The tick count is the total number of tick interrupts that have occurred since the scheduler was

started. xTaskGetTickCount() returns the current tick count value.

Parameters

None.

Return Values

xTaskGetTickCount() always returns the tick count value at the time that xTaskGetTickCount()

was called.

Notes

The actual time one tick period represents depends on the value assigned to

configTICK_RATE_HZ within FreeRTOSConfig.h. The pdMS_TO_TICKS() macro can be

used to convert a time in milliseconds to a time in ‘ticks’.

The tick count will eventually overflow and return to zero. This will not affect the internal

operation of the kernel – for example, tasks will always block for the specified period even if

the tick count overflows while the task is in the Blocked state. Overflows must however be

considered by host applications if the application makes direct use of the tick count value.

The frequency at which the tick count overflows depends on both the tick frequency and the

data type used to hold the count value. If configUSE_16_BIT_TICKS is set to 1, then the tick

count will be held in a 16-bit variable. If configUSE_16_BIT_TICKS is set to 0, then the tick

count will be held in a 32-bit variable.

94

Example

void vAFunction(void)
{
TickType_t xTime1, xTime2, xExecutionTime;

 /* Get the time the function started. */
 xTime1 = xTaskGetTickCount();

 /* Perform some operation. */

 /* Get the time following the execution of the operation. */
 xTime2 = xTaskGetTickCount();

 /* Approximately how long did the operation take? */
 xExecutionTime = xTime2 – xTime1;
}

Listing 58 Example use of xTaskGetTickCount()

 95

2.33 xTaskGetTickCountFromISR()

#include “FreeRTOS.h”
#include “task.h”

TickType_t xTaskGetTickCountFromISR(void);

Listing 59 xTaskGetTickCountFromISR() function prototype

Summary

A version of xTaskGetTickCount() that can be called from an ISR.

The tick count is the total number of tick interrupts that have occurred since the scheduler was

started.

Parameters

None.

Return Values

xTaskGetTickCountFromISR() always returns the tick count value at the time

xTaskGetTickCountFromISR() is called.

Notes

The actual time one tick period represents depends on the value assigned to

configTICK_RATE_HZ within FreeRTOSConfig.h. The pdMS_TO_TICKS() macro can be

used to convert a time in milliseconds to a time in ‘ticks’.

The tick count will eventually overflow and return to zero. This will not affect the internal

operation of the kernel – for example, tasks will always block for the specified period even if

the tick count overflows while the task is in the Blocked state. Overflows must however be

considered by host applications if the application makes direct use of the tick count value.

The frequency at which the tick count overflows depends on both the tick frequency and the

data type used to hold the count value. If configUSE_16_BIT_TICKS is set to 1, then the tick

count will be held in a 16-bit variable. If configUSE_16_BIT_TICKS is set to 0, then the tick

count will be held in a 32-bit variable.

96

Example

void vAnISR(void)
{
static TickType_t xTimeISRLastExecuted = 0;
TickType_t xTimeNow, xTimeBetweenInterrupts;

 /* Store the time at which this interrupt was entered. */
 xTimeNow = xTaskGetTickCountFromISR();

 /* Perform some operation. */

 /* How many ticks occurred between this and the previous interrupt? */
 xTimeBetweenInterrupts = xTimeISRLastExecuted – xTimeNow;

 /* If more than 200 ticks occurred between this and the previous interrupt then
 do something. */
 if(xTimeBetweenInterrupts > 200)
 {
 /* Take appropriate action here. */
 }

 /* Remember the time at which this interrupt was entered. */
 xTimeISRLastExecuted = xTimeNow;
}

Listing 60 Example use of xTaskGetTickCountFromISR()

 97

2.34 vTaskList()

#include “FreeRTOS.h”
#include “task.h”

void vTaskList(char *pcWriteBuffer);

Listing 61 vTaskList() function prototype

Summary

Creates a human readable table in a character buffer that describes the state of each task at

the time vTaskList() was called. An example is shown in Figure 2.

Figure 2 An example of the table produced by calling vTaskList()

The table includes the following information:

• Name – This is the name given to the task when the task was created.

• State – The state of the task at the time vTaskList() was called, as follows:

o ‘X’ if the task is executing (the task that called vTaskList()).

o ‘B’ if the task is in the Blocked state.

o ‘R’ if the task is in the Ready state.

o ‘S’ if the task is in the Suspended state, or in the Blocked state without a
timeout.

o ‘D’ if the task has been deleted, but the idle task has not yet freed the memory
that was being used by the task to hold its data structures and stack.

• Priority – The priority assigned to the task at the time vTaskList() was called.

98

• Stack – Shows the ‘high water mark’ of the task’s stack. This is the minimum amount of

free stack that has been available during the lifetime of the task. The closer this value is

to zero, the closer the task has come to overflowing its stack.

• Num – This is a unique number that is assigned to each task. It has no purpose other

than to help identify tasks when more than one task has been assigned the same name.

Parameters

pcWriteBuffer The buffer into which the table text is written. This must be large enough to

hold the entire table as no boundary checking is performed.

Return Values

None.

Notes

vTaskList() is a utility function that is provided for convenience only. It is not considered part

of the kernel. vTaskList() obtains its raw data using the xTaskGetSystemState() API function.

vTaskList() will disable interrupts for the duration of its execution. This might not be

acceptable for applications that include hard real time functionality.

configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must

both be set to 1 within FreeRTOSConfig.h for vTaskList() to be available.

By default, vTaskList() makes use of the standard library sprintf() function. This can result in a

marked increase in the compiled image size, and in stack usage. The FreeRTOS download

includes an open source cut down version of sprintf() in a file called printf-stdarg.c. This can

be used in place of the standard library sprintf() to help minimise the code size impact. Note

that printf-stdarg.c is licensed separately to FreeRTOS. Its license terms are contained in the

file itself.

 99

Example

void vAFunction(void)
{
/* Define a buffer that is large enough to hold the generated table. In most cases
the buffer will be too large to allocate on the stack, hence in this example it is
declared static. */
static char cBuffer[BUFFER_SIZE];

 /* Pass the buffer into vTaskList() to generate the table of information. */
 vTaskList(cBuffer);

 /* The generated information can be saved or viewed here. */
}

Listing 62 Example use of vTaskList()

100

2.35 xTaskNotify()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotify(TaskHandle_t xTaskToNotify,
 uint32_t ulValue,
 eNotifyAction eAction);

Listing 63 xTaskNotify() function prototype

Summary

Each task has a 32-bit notification value that is initialized to zero when the task is created.

xTaskNotify() is used to send an event directly to and potentially unblock a task, and optionally

update the receiving task’s notification value in one of the following ways:

• Write a 32-bit number to the notification value

• Add one (increment) the notification value

• Set one or more bits in the notification value

• Leave the notification value unchanged

Parameters

xTaskToNotify The handle of the RTOS task being notified.

To obtain a task’s handle create the task using xTaskCreate() and make use

of the pxCreatedTask parameter, or create the task using xTaskCreateStatic()

and store the returned value, or use the task’s name in a call to

xTaskGetHandle().

ulValue Used to update the notification value of the task being notified. How ulValue

is interpreted depends on the value of the eAction parameter.

eAction The action to perform when notifying the task.

eAction is an enumerated type and can take one of the following values:

• eNoAction – The task is notified but its notification value is not

 101

changed. In this case ulValue is not used.

• eSetBits – The task’s notification value is bitwise ORed with ulValue.

For example, if ulValue is set to 0x01, then bit 0 will be set within the

task's notification value. If ulValue is 0x04 then bit 2 will be set in the

task's notification value. Using eSetBits allows task notifications to be

used as a faster and light weight alternative to an event group.

• eIncrement – The task’s notification value is incremented by one. In

this case ulValue is not used.

• eSetValueWithOverwrite – The task’s notification value is

unconditionally set to the value of ulValue, even if the task already had

a notification pending when xTaskNotify() was called.

• eSetValueWithoutOverwrite – If the task already has a notification

pending then its notification value is not changed and xTaskNotify()

returns pdFAIL. If the task did not already have a notification pending

then its notification value is set to ulValue.

Return Values

If eAction is set to eSetValueWithoutOverwrite and the task’s notification value is not updated

then pdFAIL is returned. In all other cases pdPASS is returned.

Notes

If the task’s notification value is being used as a light weight and faster alternative to a binary

or counting semaphore then use the simpler xTaskNotifyGive() API function instead of

xTaskNotify().

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

102

Example

Listing 64 demonstrates xTaskNotify() being used to perform various different actions.

/* Set bit 8 in the notification value of the task referenced by xTask1Handle. */
xTaskNotify(xTask1Handle, (1UL << 8UL), eSetBits);

/* Send a notification to the task referenced by xTask2Handle, potentially
removing the task from the Blocked state, but without updating the task's
notification value. */
xTaskNotify(xTask2Handle, 0, eNoAction);

/* Set the notification value of the task referenced by xTask3Handle to 0x50,
even if the task had not read its previous notification value. */
xTaskNotify(xTask3Handle, 0x50, eSetValueWithOverwrite);

/* Set the notification value of the task referenced by xTask4Handle to 0xfff,
but only if to do so would not overwrite the task's existing notification
value before the task had obtained it (by a call to xTaskNotifyWait()
or ulTaskNotifyTake()). */
if(xTaskNotify(xTask4Handle, 0xfff, eSetValueWithoutOverwrite) == pdPASS)
{
 /* The task's notification value was updated. */
}
else
{
 /* The task's notification value was not updated. */
}

Listing 64 Example use of xTaskNotify()

 103

2.36 xTaskNotifyAndQuery()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotifyAndQuery(TaskHandle_t xTaskToNotify,
 uint32_t ulValue,
 eNotifyAction eAction,
 uint32_t *pulPreviousNotifyValue);

Listing 65 xTaskNotifyAndQuery() function prototype

Summary

xTaskNotifyAndQuery() is similar to xTaskNotify(), but includes an additional parameter in

which the subject task’s previous notification value is returned.

Each task has a 32-bit notification value that is initialized to zero when the task is created.

xTaskNotifyAndQuery() is used to send an event directly to and potentially unblock a task, and

optionally update the receiving task’s notification value in one of the following ways:

• Write a 32-bit number to the notification value

• Add one (increment) the notification value

• Set one or more bits in the notification value

• Leave the notification value unchanged

Parameters

xTaskToNotify The handle of the RTOS task being notified.

To obtain a task’s handle create the task using xTaskCreate() and

make use of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s

name in a call to xTaskGetHandle().

ulValue Used to update the notification value of the task being notified. How

ulValue is interpreted depends on the value of the eAction

parameter.

104

eAction The action to perform when notifying the task.

eAction is an enumerated type and can take one of the following

values:

• eNoAction – The task is notified but its notification value is

not changed. In this case ulValue is not used.

• eSetBits – The task’s notification value is bitwise ORed with

ulValue. For example, if ulValue is set to 0x01, then bit 0 will

be set within the task's notification value. If ulValue is 0x04

then bit 2 will be set in the task's notification value. Using

eSetBits allows task notifications to be used as a faster and

light weight alternative to an event group.

• eIncrement – The task’s notification value is incremented by

one. In this case ulValue is not used.

• eSetValueWithOverwrite – The task’s notification value is

unconditionally set to the value of ulValue, even if the task

already had a notification pending when xTaskNotify() was

called.

• eSetValueWithoutOverwrite – If the task already has a

notification pending then its notification value is not changed

and xTaskNotify() returns pdFAIL. If the task did not already

have a notification pending then its notification value is set to

ulValue.

pulPreviousNotifyValue Used to pass out the subject task's notification value before any bits

are modified by the action of xTaskNotifyAndQuery().

pulPreviousNotifyValue is an optional parameter, and can be set to

NULL if it is not required. If pulPreviousNotifyValue is not used then

consider using xTaskNotify() in place of xTaskNotifyAndQuery().

 105

Return Values

If eAction is set to eSetValueWithoutOverwrite and the task’s notification value is not updated

then pdFAIL is returned. In all other cases pdPASS is returned.

Notes

If the task’s notification value is being used as a light weight and faster alternative to a binary

or counting semaphore then use the simpler xTaskNotifyGive() API function instead of

xTaskNotify().

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

106

Example

Listing 66 demonstrates xTaskNotifyAndQuery() being used to perform various different
actions.

uint32_t ulPreviousValue;

/* Set bit 8 in the notification value of the task referenced by xTask1Handle. The
task’s previous notification value is not needed, so the last pulPreviousNotifyValue
parameter is set to NULL. */
xTaskNotifyAndQuery(xTask1Handle, (1UL << 8UL), eSetBits, NULL);

/* Send a notification to the task referenced by xTask2Handle, potentially removing
the task from the Blocked state, but without updating the task's notification value.
The task’s current notification value is saved in ulPreviousValue. */
xTaskNotifyAndQuery(xTask2Handle, 0, eNoAction, &ulPreviousValue);

/* Set the notification value of the task referenced by xTask3Handle to 0x50, even if
the task had not read its previous notification value. Save the task’s previous
notification value (before it was set to 0x50) in ulPreviousValue. */
xTaskNotifyAndQuery(xTask3Handle, 0x50, eSetValueWithOverwrite, &ulPreviousValue);

/* Set the notification value of the task referenced by xTask4Handle to 0xfff, but
only if to do so would not overwrite the task's existing notification value before
the task had obtained it (by a call to xTaskNotifyWait() or ulTaskNotifyTake()).
Save the task’s previous notification value (before it was set to 0xfff) in
ulPreviousValue. */
if(xTaskNotifyAndQuery(xTask4Handle,
 0xfff,
 eSetValueWithoutOverwrite,
 &ulPreviousValue) == pdPASS)
{
 /* The task's notification value was updated. */
}
else
{
 /* The task's notification value was not updated. */
}

Listing 66 Example use of xTaskNotifyAndQuery()

 107

2.37 xTaskNotifyAndQueryFromISR()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotifyAndQuery(TaskHandle_t xTaskToNotify,
 uint32_t ulValue,
 eNotifyAction eAction,
 uint32_t *pulPreviousNotifyValue,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 67 xTaskNotifyAndQueryFromISR() function prototype

Summary

xTaskNotifyAndQuery() is similar to xTaskNotify(), but includes an additional parameter in

which the subject task’s previous notification value is returned.

xTaskNotifyAndQueryFromISR() is a version of xTaskNotifyAndQuery() that can be called from

an interrupt service routine (ISR).

Each task has a 32-bit notification value that is initialized to zero when the task is created.

xTaskNotifyAndQueryFromISR() is used to send an event directly to and potentially unblock a

task, and optionally update the receiving task’s notification value in one of the following ways:

• Write a 32-bit number to the notification value

• Add one (increment) the notification value

• Set one or more bits in the notification value

• Leave the notification value unchanged

Parameters

xTaskToNotify The handle of the RTOS task being notified.

To obtain a task’s handle create the task using xTaskCreate()

and make use of the pxCreatedTask parameter, or create the

task using xTaskCreateStatic() and store the returned value, or

use the task’s name in a call to xTaskGetHandle().

ulValue Used to update the notification value of the task being notified.

108

How ulValue is interpreted depends on the value of the eAction

parameter.

eAction The action to perform when notifying the task.

eAction is an enumerated type and can take one of the following

values:

• eNoAction – The task is notified but its notification value

is not changed. In this case ulValue is not used.

• eSetBits – The task’s notification value is bitwise ORed

with ulValue. For example, if ulValue is set to 0x01, then

bit 0 will be set within the task's notification value. If

ulValue is 0x04 then bit 2 will be set in the task's

notification value. Using eSetBits allows task

notifications to be used as a faster and light weight

alternative to an event group.

• eIncrement – The task’s notification value is incremented

by one. In this case ulValue is not used.

• eSetValueWithOverwrite – The task’s notification value

is unconditionally set to the value of ulValue, even if the

task already had a notification pending when

xTaskNotify() was called.

• eSetValueWithoutOverwrite – If the task already has a

notification pending then its notification value is not

changed and xTaskNotify() returns pdFAIL. If the task

did not already have a notification pending then its

notification value is set to ulValue.

pulPreviousNotifyValue Used to pass out the subject task's notification value before any

bits are modified by the action of xTaskNotifyAndQuery().

pulPreviousNotifyValue is an optional parameter, and can be set

to NULL if it is not required. If pulPreviousNotifyValue is not

 109

used then consider using xTaskNotifyFromISR() in place of

xTaskNotifyAndQueryFromISR().

pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken must be initialized to pdFALSE.

xTaskNotifyAndQueryFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE if sending the

notification caused the task being notified to leave the Blocked

state, and the task being notified has a priority above that of the

currently running task.

If xTaskNotifyAndQueryFromISR() sets this value to pdTRUE

then a context switch should be requested before the interrupt is

exited. See Listing 68 for an example.

pxHigherPriorityTaskWoken is an optional parameter and can

be set to NULL.

Return Values

If eAction is set to eSetValueWithoutOverwrite and the task’s notification value is not updated

then pdFAIL is returned. In all other cases pdPASS is returned.

Notes

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

110

Example

Listing 68 demonstrates xTaskNotifyAndQueryFromISR() being used to perform various
different actions from inside an ISR.

uint32_t ulPreviousValue;

/* xHigherPriorityTaskWoken must be set to pdFALSE so it can later be detected if it
was set to pdTRUE by any of the functions called within the interrupt. */
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

/* Set bit 8 in the notification value of the task referenced by xTask1Handle. The
task’s previous notification value is not needed, so the last pulPreviousNotifyValue
parameter is set to NULL. */
xTaskNotifyAndQueryFromISR(xTask1Handle,
 (1UL << 8UL),
 eSetBits,
 NULL,
 &xHigherPriorityTaskWoken);

/* Send a notification to the task referenced by xTask2Handle, potentially removing
the task from the Blocked state, but without updating the task's notification value.
The task’s current notification value is saved in ulPreviousValue. */
xTaskNotifyAndQueryFromISR(xTask2Handle,
 0,
 eNoAction,
 &ulPreviousValue,
 &xHigherPriorityTaskWoken);

/* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch should be
performed to ensure the interrupt returns directly to the highest priority task. The
macro used for this purpose is dependent on the port in use and may be called
portEND_SWITCHING_ISR(). */
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

Listing 68 Example use of xTaskNotifyAndQueryFromISR()

 111

2.38 xTaskNotifyFromISR()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotifyFromISR(TaskHandle_t xTaskToNotify,
 uint32_t ulValue,
 eNotifyAction eAction
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 69 xTaskNotifyFromISR() function prototype

Summary

A version of xTaskNotify() that can be called from an interrupt service routine (ISR).

Each task has a 32-bit notification value that is initialized to zero when the task is created.

xTaskNotifyFromISR() is used to send an event directly to and potentially unblock a task, and

optionally update the receiving task’s notification value in one of the following ways:

• Write a 32-bit number to the notification value

• Add one (increment) the notification value

• Set one or more bits in the notification value

• Leave the notification value unchanged

Parameters

xTaskToNotify The handle of the RTOS task being notified.

To obtain a task’s handle create the task using xTaskCreate()

and make use of the pxCreatedTask parameter, or create the

task using xTaskCreateStatic() and store the returned value, or

use the task’s name in a call to xTaskGetHandle().

ulValue Used to update the notification value of the task being notified.

How ulValue is interpreted depends on the value of the eAction

parameter.

eAction The action to perform when notifying the task.

112

eAction is an enumerated type and can take one of the following

values:

• eNoAction – The task is notified but its notification value

is not changed. In this case ulValue is not used.

• eSetBits – The task’s notification value is bitwise ORed

with ulValue. For example, if ulValue is set to 0x01, then

bit 0 will be set within the task's notification value. If

ulValue is 0x04 then bit 2 will be set in the task's

notification value. Using eSetBits allows task

notifications to be used as a faster and light weight

alternative to an event group.

• eIncrement – The task’s notification value is incremented

by one. In this case ulValue is not used.

• eSetValueWithOverwrite – The task’s notification value

is unconditionally set to the value of ulValue, even if the

task already had a notification pending when

xTaskNotify() was called.

• eSetValueWithoutOverwrite – If the task already has a

notification pending then its notification value is not

changed and xTaskNotify() returns pdFAIL. If the task

did not already have a notification pending then its

notification value is set to ulValue.

pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken must be initialized to pdFALSE.

xTaskNotifyFromISR() will then set *pxHigherPriorityTaskWoken

to pdTRUE if sending the notification caused the task being

notified to leave the Blocked state, and the task being notified

has a priority above that of the currently running task.

If xTaskNotifyFromISR() sets this value to pdTRUE then a

context switch should be requested before the interrupt is

exited. See Listing 70 for an example.

 113

pxHigherPriorityTaskWoken is an optional parameter and can

be set to NULL.

Return Values

If eAction is set to eSetValueWithoutOverwrite and the task’s notification value is not updated

then pdFAIL is returned. In all other cases pdPASS is returned.

Notes

If the task’s notification value is being used as a light weight and faster alternative to a binary

or counting semaphore then use the simpler vTaskNotifyGiveFromISR() API function instead

of xTaskNotifyFromISR().

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

Example

This example demonstrates a single RTOS task being used to process events that originate

from two separate interrupt service routines - a transmit interrupt and a receive interrupt.

Many peripherals will use the same handler for both, in which case the peripheral's interrupt

status register can simply be bitwise ORed with the receiving task's notification value.

114

/* First bits are defined to represent each interrupt source. */
#define TX_BIT 0x01
#define RX_BIT 0x02

/* The handle of the task that will receive notifications from the interrupts. The
handle was obtained when the task was created. */
static TaskHandle_t xHandlingTask;

/* The implementation of the transmit interrupt service routine. */
void vTxISR(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Clear the interrupt source. */
 prvClearInterrupt();

 /* Notify the task that the transmission is complete by setting the TX_BIT in the
 task's notification value. */
 xTaskNotifyFromISR(xHandlingTask, TX_BIT, eSetBits, &xHigherPriorityTaskWoken);

 /* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch should
 be performed to ensure the interrupt returns directly to the highest priority
 task. The macro used for this purpose is dependent on the port in use and may be
 called portEND_SWITCHING_ISR(). */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
/*---*/

/* The implementation of the receive interrupt service routine is identical except
for the bit that gets set in the receiving task's notification value. */
void vRxISR(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Clear the interrupt source. */
 prvClearInterrupt();

 /* Notify the task that the reception is complete by setting the RX_BIT in the
 task's notification value. */
 xTaskNotifyFromISR(xHandlingTask, RX_BIT, eSetBits, &xHigherPriorityTaskWoken);

 /* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch should
 be performed to ensure the interrupt returns directly to the highest priority
 task. The macro used for this purpose is dependent on the port in use and may be
 called portEND_SWITCHING_ISR(). */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
/*---*/

 115

/* The implementation of the task that is notified by the interrupt service
routines. */
static void prvHandlingTask(void *pvParameter)
{
const TickType_t xMaxBlockTime = pdMS_TO_TICKS(500);
BaseType_t xResult;

 for(;;)
 {
 /* Wait to be notified of an interrupt. */
 xResult = xTaskNotifyWait(pdFALSE, /* Don't clear bits on entry. */
 ULONG_MAX, /* Clear all bits on exit. */
 &ulNotifiedValue, /* Stores the notified value. */
 xMaxBlockTime);

 if(xResult == pdPASS)
 {
 /* A notification was received. See which bits were set. */
 if((ulNotifiedValue & TX_BIT) != 0)
 {
 /* The TX ISR has set a bit. */
 prvProcessTx();
 }

 if((ulNotifiedValue & RX_BIT) != 0)
 {
 /* The RX ISR has set a bit. */
 prvProcessRx();
 }
 }
 else
 {
 /* Did not receive a notification within the expected time. */
 prvCheckForErrors();
 }
 }
}

Listing 70 Example use of xTaskNotifyFromISR()

116

2.39 xTaskNotifyGive()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotifyGive(TaskHandle_t xTaskToNotify);

Listing 71 xTaskNotifyGive() function prototype

Summary

Each task has a 32-bit notification value that is initialized to zero when the task is created. A

task notification is an event sent directly to a task that can unblock the receiving task, and

optionally update the receiving task’s notification value.

xTaskNotifyGive() is a macro intended for use when a task notification value is being used as

a lighter weight and faster alternative to a binary semaphore or a counting semaphore.

FreeRTOS semaphores are given using the xSemaphoreGive() API function, and

xTaskNotifyGive() is the equivalent that uses the receiving task's notification value instead of a

separate semaphore object.

Parameters

xTaskToNotify The handle of the task being notified and having its notification value

incremented.

To obtain a task’s handle create the task using xTaskCreate() and make use

of the pxCreatedTask parameter, or create the task using xTaskCreateStatic()

and store the returned value, or use the task’s name in a call to

xTaskGetHandle().

Return Values

xTaskNotifyGive() is a macro that calls xTaskNotify() with the eAction parameter set to

eIncrement. Therefore pdPASS is always returned.

 117

Notes

When a task notification value is being used as a binary or counting semaphore then the task

being notified should wait for the notification using the simpler ulTaskNotifyTake() API function

rather than the xTaskNotifyWait() API function.

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

118

Example

/* Prototypes of the two tasks created by main(). */
static void prvTask1(void *pvParameters);
static void prvTask2(void *pvParameters);

/* Handles for the tasks create by main(). */
static TaskHandle_t xTask1 = NULL, xTask2 = NULL;

/* Create two tasks that send notifications back and forth to each other, then
start the RTOS scheduler. */
void main(void)
{
 xTaskCreate(prvTask1, "Task1", 200, NULL, tskIDLE_PRIORITY, &xTask1);
 xTaskCreate(prvTask2, "Task2", 200, NULL, tskIDLE_PRIORITY, &xTask2);
 vTaskStartScheduler();
}
/*---*/

static void prvTask1(void *pvParameters)
{
 for(;;)
 {
 /* Send a notification to prvTask2(), bringing it out of the Blocked
 state. */
 xTaskNotifyGive(xTask2);

 /* Block to wait for prvTask2() to notify this task. */
 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
 }
}
/*---*/

static void prvTask2(void *pvParameters)
{
 for(;;)
 {
 /* Block to wait for prvTask1() to notify this task. */
 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

 /* Send a notification to prvTask1(), bringing it out of the Blocked
 state. */
 xTaskNotifyGive(xTask1);
 }
}

Listing 72 Example use of xTaskNotifyGive()

 119

2.40 vTaskNotifyGiveFromISR()

#include “FreeRTOS.h”
#include “task.h”

void vTaskNotifyGiveFromISR(TaskHandle_t xTaskToNotify,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 73 vTaskNotifyGiveFromISR() function prototype

Summary

A version of xTaskNotifyGive() that can be called from an interrupt service routine (ISR).

Each task has a 32-bit notification value that is initialized to zero when the task is created. A

task notification is an event sent directly to a task that can unblock the receiving task, and

optionally update the receiving task’s notification value.

vTaskNotifyGiveFromISR() is intended for use when a task notification value is being used as

a lighter weight and faster alternative to a binary semaphore or a counting semaphore.

FreeRTOS semaphores are given using the xSemaphoreGiveFromISR() API function, and

vTaskNotifyGiveFromISR() is the equivalent that uses the receiving task's notification value

instead of a separate semaphore object.

Parameters

xTaskToNotify The handle of the RTOS task being notified and having its

notification value incremented.

To obtain a task’s handle create the task using xTaskCreate()

and make use of the pxCreatedTask parameter, or create the

task using xTaskCreateStatic() and store the returned value, or

use the task’s name in a call to xTaskGetHandle().

pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken must be initialized to pdFALSE.

vTaskNotifyGiveFromISR() will then set

*pxHigherPriorityTaskWoken to pdTRUE if sending the

notification caused the task being notified to leave the Blocked

state, and the unblocked task has a priority above that of the

120

currently running task.

If vTaskNotifyGiveFromISR() sets this value to pdTRUE then a

context switch should be requested before the interrupt is

exited. See Listing 74 for an example.

pxHigherPriorityTaskWoken is an optional parameter and can

be set to NULL.

Notes

When a task notification value is being used as a binary or counting semaphore then the task

being notified should wait for the notification using the ulTaskNotifyTake() API function rather

than the xTaskNotifyWait() API function.

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

Example

This is an example of a transmit function in a generic peripheral driver. An task calls the

transmit function, then waits in the Blocked state (so not using an CPU time) until it is notified

that the transmission is complete. The transmission is performed by a DMA, and the DMA end

interrupt is used to notify the task.

static TaskHandle_t xTaskToNotify = NULL;

/* The peripheral driver's transmit function. */
void StartTransmission(uint8_t *pcData, size_t xDataLength)
{
 /* At this point xTaskToNotify should be NULL as no transmission is in progress.
 A mutex can be used to guard access to the peripheral if necessary. */
 configASSERT(xTaskToNotify == NULL);

 /* Store the handle of the calling task. */
 xTaskToNotify = xTaskGetCurrentTaskHandle();

 /* Start the transmission - an interrupt is generated when the transmission
 is complete. */
 vStartTransmit(pcData, xDataLength);
}
/*---*/

 121

/* The transmit end interrupt. */
void vTransmitEndISR(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* At this point xTaskToNotify should not be NULL as a transmission was in
 progress. */
 configASSERT(xTaskToNotify != NULL);

 /* Notify the task that the transmission is complete. */
 vTaskNotifyGiveFromISR(xTaskToNotify, &xHigherPriorityTaskWoken);

 /* There are no transmissions in progress, so no tasks to notify. */
 xTaskToNotify = NULL;

 /* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch
 should be performed to ensure the interrupt returns directly to the highest
 priority task. The macro used for this purpose is dependent on the port in
 use and may be called portEND_SWITCHING_ISR(). */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
/*---*/

/* The task that initiates the transmission, then enters the Blocked state (so
not consuming any CPU time) to wait for it to complete. */
void vAFunctionCalledFromATask(uint8_t ucDataToTransmit, size_t xDataLength)
{
uint32_t ulNotificationValue;
const TickType_t xMaxBlockTime = pdMS_TO_TICKS(200);

 /* Start the transmission by calling the function shown above. */
 StartTransmission(ucDataToTransmit, xDataLength);

 /* Wait for the transmission to complete. */
 ulNotificationValue = ulTaskNotifyTake(pdFALSE, xMaxBlockTime);

 if(ulNotificationValue == 1)
 {
 /* The transmission ended as expected. */
 }
 else
 {
 /* The call to ulTaskNotifyTake() timed out. */
 }
}

Listing 74 Example use of vTaskNotifyGiveFromISR()

122

2.41 xTaskNotifyStateClear()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotifyStateClear(TaskHandle_t xTask)

Listing 75 xTaskNotifyStateClear() function prototype

Summary

Each task has a 32-bit notification value that is initialized to zero when the task is created. A

task notification is an event sent directly to a task that can unblock the receiving task, and

optionally update the receiving task’s notification value.

If a task is in the Blocked state to wait for a notification when the notification arrives then the

task immediately exits the Blocked state and the notification does not remain pending. If a

task is not waiting for a notification when a notification arrives then the notification will remain

pending until either:

• The receiving task reads its notification value.

• The receiving task is the subject task in a call to xTaskNotifyStateClear().

xTaskNotifyStateClear() will clear a pending notification, but does not change the notification

value.

Parameters

xTask The handle of the task that will have a pending notification cleared. Setting xTask to

NULL will clear a pending notification in the task that called xTaskNotifyStateClear().

Return Values

If the task referenced by xTask had a notification pending then pdPASS is returned. If the task

referenced by xTask did not have a notification pending then pdFAIL is returned.

 123

Example

/* An example UART transmit function. The function starts a UART transmission then
waits to be notified that the transmission is complete. The transmission complete
notification is sent from the UART interrupt. The calling task’s notification state
is cleared before the transmission is started to ensure it is not co-incidentally
already pending before the task attempts to block on its notification state. */
void vSerialPutString(const signed char * const pcStringToSend,
 uint16_t usStringLength)
{
const TickType_t xMaxBlockTime = pdMS_TO_TICKS(5000);

 /* xSendingTask holds the handle of the task waiting for the transmission to
 complete. If xSendingTask is NULL then a transmission is not in progress.
 Don't start to send a new string unless transmission of the previous string
 is complete. */
 if((xSendingTask == NULL) && (usStringLength > 0))
 {
 /* Ensure the calling task’s notification state is not already pending. */
 xTaskNotifyStateClear(NULL);

 /* Store the handle of the transmitting task. This is used to unblock
 the task when the transmission has completed. */
 xSendingTask = xTaskGetCurrentTaskHandle();

 /* Start sending the string - the transmission is then controlled by an
 interrupt. */
 UARTSendString(pcStringToSend, usStringLength);

 /* Wait in the Blocked state (so not using any CPU time) until the UART
 ISR sends a notification to xSendingTask to notify (and unblock) the task
 when the transmission is complete. */
 ulTaskNotifyTake(pdTRUE, xMaxBlockTime);
 }
}

Listing 76 Example use of xTaskNotifyStateClear()

124

2.42 ulTaskNotifyTake()

#include “FreeRTOS.h”
#include “task.h”

uint32_t ulTaskNotifyTake(BaseType_t xClearCountOnExit, TickType_t xTicksToWait);

Listing 77 ulTaskNotifyTake() function prototype

Summary

Each task has a 32-bit notification value that is initialized to zero when the task is created. A

task notification is an event sent directly to a task that can unblock the receiving task, and

optionally update the receiving task’s notification value.

ulTaskNotifyTake() is intended for use when a task notification is used as a faster and lighter

weight alternative to a binary semaphore or a counting semaphore. FreeRTOS semaphores

are taken using the xSemaphoreTake() API function, ulTaskNotifyTake() is the equivalent that

uses a task notification value instead of a separate semaphore object.

Where as xTaskNotifyWait() will return when a notification is pending, ulTaskNotifyTake() will

return when the task's notification value is not zero, decrementing the task's notification value

before it returns.

A task can use ulTaskNotifyTake() to optionally block to wait for a the task's notification value

to be non-zero. The task does not consume any CPU time while it is in the Blocked state.

ulTaskNotifyTake() can either clear the task's notification value to zero on exit, in which case

the notification value acts like a binary semaphore, or decrement the task's notification value

on exit, in which case the notification value acts more like a counting semaphore.

Parameters

xClearCountOnExit If xClearCountOnExit is set to pdFALSE then the task's notification value

is decremented before ulTaskNotifyTake() exits. This is equivalent to the

value of a counting semaphore being decremented by a successful call

to xSemaphoreTake().

If xClearCountOnExit is set to pdTRUE then the task's notification value

 125

is reset to 0 before ulTaskNotifyTake() exits. This is equivalent to the

value of a binary semaphore being left at zero (or empty, or 'not

available') after a successful call to xSemaphoreTake().

xTicksToWait The maximum time to wait in the Blocked state for a notification to be

received if a notification is not already pending when ulTaskNotifyTake()

is called.

The RTOS task does not consume any CPU time when it is in the

Blocked state.

The time is specified in RTOS tick periods. The pdMS_TO_TICKS()

macro can be used to convert a time specified in milliseconds into a time

specified in ticks.

Return Values

The value of the task's notification value before it is decremented or cleared (see the

description of xClearCountOnExit).

Notes

When a task is using its notification value as a binary or counting semaphore other tasks and

interrupts should send notifications to it using either the xTaskNotifyGive() macro, or the

xTaskNotify() function with the function's eAction parameter set to eIncrement (the two are

equivalent).

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

126

Example

/* An interrupt handler that unblocks a high priority task in which the event that
generated the interrupt is processed. If the priority of the task is high enough
then the interrupt will return directly to the task (so it will interrupt one task
then return to a different task), so the processing will occur contiguously in time -
just as if all the processing had been done in the interrupt handler itself. */
void vANInterruptHandler(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Clear the interrupt. */
 prvClearInterruptSource();

 /* Unblock the handling task so the task can perform any processing necessitated
 by the interrupt. xHandlingTask is the task's handle, which was obtained
 when the task was created. */
 vTaskNotifyGiveFromISR(xHandlingTask, &xHigherPriorityTaskWoken);

 /* Force a context switch if xHigherPriorityTaskWoken is now set to pdTRUE.
 The macro used to do this is dependent on the port and may be called
 portEND_SWITCHING_ISR(). */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
/*---*/

/* Task that blocks waiting to be notified that the peripheral needs servicing. */
void vHandlingTask(void *pvParameters)
{
BaseType_t xEvent;

 for(;;)
 {
 /* Block indefinitely (without a timeout, so no need to check the function's
 return value) to wait for a notification. Here the RTOS task notification
 is being used as a binary semaphore, so the notification value is cleared
 to zero on exit. NOTE! Real applications should not block indefinitely,
 but instead time out occasionally in order to handle error conditions
 that may prevent the interrupt from sending any more notifications. */
 ulTaskNotifyTake(pdTRUE, /* Clear the notification value on exit. */
 portMAX_DELAY);/* Block indefinitely. */

 /* The RTOS task notification is used as a binary (as opposed to a counting)
 semaphore, so only go back to wait for further notifications when all events
 pending in the peripheral have been processed. */
 do
 {
 xEvent = xQueryPeripheral();

 if(xEvent != NO_MORE_EVENTS)
 {
 vProcessPeripheralEvent(xEvent);
 }

 } while(xEvent != NO_MORE_EVENTS);
 }
}

Listing 78 Example use of ulTaskNotifyTake()

 127

2.43 ulTaskNotifyValueClear()

#include “FreeRTOS.h”
#include “task.h”

uint32_t ulTaskNotifyValueClear(TaskHandle_t xTask,
 uint32_t ulBitsToClear);

Listing 79 ulTaskNotifyValueClear() function prototype

Summary

Prior to FreeRTOS v10.4.0 each task had a single “notification value”, and all task notification

API functions operated on that value. Replacing the single notification value with an array of

notification values necessitated a new set of API functions that could address specific

notifications with the array. ulTaskNotifiyValueClear() is the original API function and remains

for backward compatibility. Calling ulTaskNotifiyValueClear() is equivalent to calling

ulTaskNotifyValueClearIndexed() with the uxIndexToClear parameter set to 0.

xTaskNotifyWait() waits, with an optional timeout, for the calling task to receive a notification. If

the receiving task was already Blocked waiting for a notification when one arrives the receiving

task will be removed from the Blocked state and the notification cleared.

Parameters

xTask The handle of the RTOS task that will have bits in one of its notification values

cleared. Set xTask to NULL to clear bits in a notification value of the calling

task. To obtain a task’s handle create the task using xTaskCreate() and make

use of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s name in a

call to xTaskGetHandle().

ulBitsToClear Bit mask of the bits to clear in the notification value of xTask. Set a bit to 1 to

clear the corresponding bits in the task’s notification value. Set ulBitsToClear

to 0xFFFFFFFF (UINT_MAX on 32-bit architectures) to clear the notification

value to 0. Set ulBitsToClear to 0 to query the task’s notification value without

clearing any bits.

128

Return Values

The value of the target tasks’s notification value before the bits specified by ulBitsToClear

were cleared.

Notes

If a notification is sent to an index within the array of notifications then the notification at that

index is said to be ‘ending’ until it is read or explicitly cleared by the receiving task.

xTaskNotifyStateClearIndexed() is the function that clears a pending notification without

reading the notification value. The notification value at the same array index is not altered. Set

xTask to NULL to clear the notification state of the calling task.

configUSE_TASK_NOTIFICATIONS must be 1 or undefined in FreeRTOSConfig.h to use.

 129

Example

/* Example function that clears notification bits and then clears the notification state. */
void vExampleNotificationClear(TaskHandle_t xTaskToNotify)
{
uint32_t ulNotifiedValue;

 /* Get the task to set all bits its own notification value. This is not a
 normal thing to do, and is only done here as an example. */
 xTaskNotify(xTaskToNotify, notifyUINT32_MAX, eSetBits);

 /* Now clear the top bytes - the returned value from the first call should
 indicate that previously all bits were set. */
 configASSERT(ulTaskNotifyValueClear(xTaskToNotify,
 notifyUINT32_HIGH_BYTE) ==
 notifyUINT32_MAX);

 /* Next clear the bottom bytes - the returned value this time should indicate
 that the top byte was clear (before the bottom byte was cleared. */
 configASSERT(ulTaskNotifyValueClear(xTaskToNotify,
 notifyUINT32_LOW_BYTE) ==
 (notifyUINT32_MAX &
 ~notifyUINT32_HIGH_BYTE));

 /* Next clear all bytes - the returned value should indicate that previously the
 high and low bytes were clear. */
 configASSERT(ulTaskNotifyValueClear(xTaskToNotify,
 notifyUINT32_MAX) ==
 (notifyUINT32_MAX &
 ~notifyUINT32_HIGH_BYTE &
 ~notifyUINT32_LOW_BYTE));

 /* Now the notification state should be eNotified, so it should now be
 possible to clear the notification state. */
 configASSERT(xTaskNotifyStateClear(NULL) == pdTRUE);
 configASSERT(xTaskNotifyStateClear(NULL) == pdFALSE);
}

Listing 80 Example use of ulTaskNotifyValueClear ()

130

2.44 xTaskNotifyWait()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskNotifyWait(uint32_t ulBitsToClearOnEntry,
 uint32_t ulBitsToClearOnExit,
 uint32_t *pulNotificationValue,
 TickType_t xTicksToWait);

Listing 81 xTaskNotifyWait() function prototype

Summary

Each task has a 32-bit notification value that is initialized to zero when the task is created. A

task notification is an event sent directly to a task that can unblock the receiving task, and

optionally update the receiving task’s notification value in a number of different ways. For

example, a notification may overwrite the receiving task's notification value, or just set one or

more bits in the receiving task's notification value. See the xTaskNotify() API documentation

for examples.

xTaskNotifyWait() waits, with an optional timeout, for the calling task to receive a notification.

If the receiving task was already Blocked waiting for a notification when one arrives the

receiving task will be removed from the Blocked state and the notification cleared.

Parameters

ulBitsToClearOnEntry Any bits set in ulBitsToClearOnEntry will be cleared in the calling

task's notification value on entry to the xTaskNotifyWait() function

(before the task waits for a new notification) provided a notification is

not already pending when xTaskNotifyWait() is called.

For example, if ulBitsToClearOnEntry is 0x01, then bit 0 of the task's

notification value will be cleared on entry to the function.

Setting ulBitsToClearOnEntry to 0xffffffff (ULONG_MAX) will clear all

the bits in the task's notification value, effectively clearing the value to

0.

ulBitsToClearOnExit Any bits set in ulBitsToClearOnExit will be cleared in the calling task's

 131

notification value before xTaskNotifyWait() function exits if a

notification was received.

The bits are cleared after the task's notification value has been saved

in *pulNotificationValue (see the description of pulNotificationValue

below).

For example, if ulBitsToClearOnExit is 0x03, then bit 0 and bit 1 of the

task's notification value will be cleared before the function exits.

Setting ulBitsToClearOnExit to 0xffffffff (ULONG_MAX) will clear all

the bits in the task's notification value, effectively clearing the value to

0.

pulNotificationValue Used to pass out the task's notification value. The value copied to

*pulNotificationValue is the task's notification value as it was before

any bits were cleared due to the ulBitsToClearOnExit setting.

pulNotificationValue is an optional parameter and can be set to NULL

if it is not required.

xTicksToWait The maximum time to wait in the Blocked state for a notification to be

received if a notification is not already pending when

xTaskNotifyWait() is called.

The task does not consume any CPU time when it is in the Blocked

state.

The time is specified in RTOS tick periods. The pdMS_TO_TICKS()

macro can be used to convert a time specified in milliseconds into a

time specified in ticks.

Return Values

pdTRUE is returned if a notification was received, or if a notification was already pending when

xTaskNotifyWait() was called.

pdFALSE is returned if the call to xTaskNotifyWait() timed out before a notification was

received.

132

Notes

If you are using task notifications to implement binary or counting semaphore type behavior

then use the simpler ulTaskNotifyTake() API function instead of xTaskNotifyWait().

RTOS task notification functionality is enabled by default, and can be excluded from a build

(saving 8 bytes per task) by setting configUSE_TASK_NOTIFICATIONS to 0 in

FreeRTOSConfig.h.

Example

/* This task shows bits within the RTOS task notification value being used to pass different
events to the task in the same way that flags in an event group might be used for the same
purpose. */
void vAnEventProcessingTask(void *pvParameters)
{
uint32_t ulNotifiedValue;

 for(;;)
 {
 /* Block indefinitely (without a timeout, so no need to check the function's
 return value) to wait for a notification.

 Bits in this RTOS task's notification value are set by the notifying
 tasks and interrupts to indicate which events have occurred. */
 xTaskNotifyWait(0x00, /* Don't clear any notification bits on entry. */
 ULONG_MAX, /* Reset the notification value to 0 on exit. */
 &ulNotifiedValue, /* Notified value pass out in ulNotifiedValue. */
 portMAX_DELAY); /* Block indefinitely. */

 /* Process any events that have been latched in the notified value. */

 if((ulNotifiedValue & 0x01) != 0)
 {
 /* Bit 0 was set - process whichever event is represented by bit 0. */
 prvProcessBit0Event();
 }

 if((ulNotifiedValue & 0x02) != 0)
 {
 /* Bit 1 was set - process whichever event is represented by bit 1. */
 prvProcessBit1Event();
 }

 if((ulNotifiedValue & 0x04) != 0)
 {
 /* Bit 2 was set - process whichever event is represented by bit 2. */
 prvProcessBit2Event();
 }

 /* Etc. */
 }
}

Listing 82 Example use of xTaskNotifyWait()

 133

2.45 uxTaskPriorityGet()

#include “FreeRTOS.h”
#include “task.h”

UBaseType_t uxTaskPriorityGet(TaskHandle_t pxTask);

Listing 83 uxTaskPriorityGet() function prototype

Summary

Queries the priority assigned to a task at the time uxTaskPriorityGet() is called.

Parameters

pxTask The handle of the task being queried (the subject task).

To obtain a task’s handle create the task using xTaskCreate() and make use of the

pxCreatedTask parameter, or create the task using xTaskCreateStatic() and store

the returned value, or use the task’s name in a call to xTaskGetHandle().

A task may query its own priority by passing NULL in place of a valid task handle.

Return Values

The value returned is the priority of the task being queried at the time uxTaskPriorityGet() is

called.

134

Example

void vAFunction(void)
{
TaskHandle_t xHandle;
UBaseType_t uxCreatedPriority, uxOurPriority;

 /* Create a task, storing the handle of the created task in xHandle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 STACK_SIZE, NULL, PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. */
 }
 else
 {
 /* Use the handle to query the priority of the created task. */
 uxCreatedPriority = uxTaskPriorityGet(xHandle);

 /* Query the priority of the calling task by using NULL in place of
 a valid task handle. */
 uxOurPriority = uxTaskPriorityGet(NULL);

 /* Is the priority of this task higher than the priority of the task
 just created? */
 if(uxOurPriority > uxCreatedPriority)
 {
 /* Yes. */
 }
 }
}

Listing 84 Example use of uxTaskPriorityGet()

 135

2.46 vTaskPrioritySet()

#include “FreeRTOS.h”
#include “task.h”

void vTaskPrioritySet(TaskHandle_t pxTask, UBaseType_t uxNewPriority);

Listing 85 vTaskPrioritySet() function prototype

Summary

Changes the priority of a task.

Parameters

pxTask The handle of the task being modified (the subject task).

To obtain a task’s handle create the task using xTaskCreate() and make use

of the pxCreatedTask parameter, or create the task using xTaskCreateStatic()

and store the returned value, or use the task’s name in a call to

xTaskGetHandle().

A task can change its own priority by passing NULL in place of a valid task

handle.

uxNewPriority The priority to which the subject task will be set. Priorities can be assigned

from 0, which is the lowest priority, to (configMAX_PRIORITIES – 1), which is

the highest priority.

configMAX_PRIORITIES is defined in FreeRTOSConfig.h. Passing a value

above (configMAX_PRIORITIES – 1) will result in the priority assigned to the

task being capped to the maximum legitimate value.

Return Values

None.

136

Notes

vTaskPrioritySet() must only be called from an executing task, and therefore must not be

called while the scheduler is in the Initialization state (prior to the scheduler being started).

It is possible to have a set of tasks that are all blocked waiting for the same queue or

semaphore event. These tasks will be ordered according to their priority – for example, the

first event will unblock the highest priority task that was waiting for the event, the second event

will unblock the second highest priority task that was originally waiting for the event, etc.

Using vTaskPrioritySet() to change the priority of such a blocked task will not cause the order

in which the blocked tasks are assessed to be re-evaluated.

Example

void vAFunction(void)
{
TaskHandle_t xHandle;

 /* Create a task, storing the handle of the created task in xHandle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 STACK_SIZE,
 NULL,
 PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. */
 }
 else
 {
 /* Use the handle to raise the priority of the created task. */
 vTaskPrioritySet(xHandle, PRIORITY + 1);

 /* Use NULL in place of a valid task handle to set the priority of the
 calling task to 1. */
 vTaskPrioritySet(NULL, 1);
 }
}

Listing 86 Example use of vTaskPrioritySet()

 137

2.47 vTaskResume()

#include “FreeRTOS.h”
#include “task.h”

void vTaskResume(TaskHandle_t pxTaskToResume);

Listing 87 vTaskResume() function prototype

Summary

Transition a task from the Suspended state to the Ready state. The task must have previously

been placed into the Suspended state using a call to vTaskSuspend().

Parameters

pxTaskToResume The handle of the task being resumed (transitioned out of the Suspended

state). This is the subject task.

To obtain a task’s handle create the task using xTaskCreate() and make

use of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s name

in a call to xTaskGetHandle().

Return Values

None.

Notes

A task can be blocked to wait for a queue event, specifying a timeout period. It is legitimate to

move such a Blocked task into the Suspended state using a call to vTaskSuspend(), then out

of the Suspended state and into the Ready state using a call to vTaskResume(). Following

this scenario, the next time the task enters the Running state it will check whether or not its

timeout period has (in the meantime) expired. If the timeout period has not expired, the task

will once again enter the Blocked state to wait for the queue event for the remainder of the

originally specified timeout period.

138

A task can also be blocked to wait for a temporal event using the vTaskDelay() or

vTaskDelayUntil() API functions. It is legitimate to move such a Blocked task into the

Suspended state using a call to vTaskSuspend(), then out of the Suspended state and into the

Ready state using a call to vTaskResume(). Following this scenario, the next time the task

enters the Running state it will exit the vTaskDelay() or vTaskDelayUntil() function as if the

specified delay period had expired, even if this is not actually the case.

vTaskResume() must only be called from an executing task and therefore must not be called

while the scheduler is in the Initialization state (prior to the scheduler being started).

Example

void vAFunction(void)
{
TaskHandle_t xHandle;

 /* Create a task, storing the handle to the created task in xHandle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 STACK_SIZE,
 NULL,
 PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. */
 }
 else
 {
 /* Use the handle to suspend the created task. */
 vTaskSuspend(xHandle);

 /* The suspended task will not run during this period, unless another task
 calls vTaskResume(xHandle). */

 /* Resume the suspended task again. */
 vTaskResume(xHandle);

 /* The created task is again available to the scheduler and can enter
 The Running state. */
 }
}

Listing 88 Example use of vTaskResume()

 139

2.48 xTaskResumeAll()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskResumeAll(void);

Listing 89 xTaskResumeAll() function prototype

Summary

Resumes scheduler activity, following a previous call to vTaskSuspendAll(), by transitioning

the scheduler into the Active state from the Suspended state.

Parameters

None.

Return Values

pdTRUE The scheduler was transitioned into the Active state. The transition caused a

pending context switch to occur.

pdFALSE Either the scheduler was transitioned into the Active state and the transition did not

cause a context switch to occur, or the scheduler was left in the Suspended state

due to nested calls to vTaskSuspendAll().

Notes

The scheduler can be suspended by calling vTaskSuspendAll(). When the scheduler is

suspended, interrupts remain enabled, but a context switch will not occur. If a context switch

is requested while the scheduler is suspended, then the request will be held pending until such

time that the scheduler is resumed (un-suspended).

Calls to vTaskSuspendAll() can be nested. The same number of calls must be made to

xTaskResumeAll() as have previously been made to vTaskSuspendAll() before the scheduler

will leave the Suspended state and re-enter the Active state.

xTaskResumeAll() must only be called from an executing task and therefore must not be

called while the scheduler is in the Initialization state (prior to the scheduler being started).

140

Other FreeRTOS API functions should not be called while the scheduler is suspended.

Example

 141

/* A function that suspends then resumes the scheduler. */
void vDemoFunction(void)
{
 /* This function suspends the scheduler. When it is called from vTask1 the
 scheduler is already suspended, so this call creates a nesting depth of 2. */
 vTaskSuspendAll();

 /* Perform an action here. */

 /* As calls to vTaskSuspendAll() are now nested, resuming the scheduler here
 does not cause the scheduler to re-enter the active state. */
 xTaskResumeAll();
}

void vTask1(void * pvParameters)
{
 for(;;)
 {
 /* Perform some actions here. */

 /* At some point the task wants to perform an operation during which it
 does not want to get swapped out, or it wants to access data which is also
 accessed from another task (but not from an interrupt). It cannot use
 taskENTER_CRITICAL()/taskEXIT_CRITICAL() as the length of the operation may
 cause interrupts to be missed. */

 /* Prevent the scheduler from performing a context switch. */
 vTaskSuspendAll();

 /* Perform the operation here. There is no need to use critical sections
 as the task has all the processing time other than that utilized by interrupt
 service routines.*/

 /* Calls to vTaskSuspendAll() can be nested, so it is safe to call a (non
 API) function that also calls vTaskSuspendAll(). API functions should not
 be called while the scheduler is suspended. */
 vDemoFunction();

 /* The operation is complete. Set the scheduler back into the Active
 state. */
 if(xTaskResumeAll() == pdTRUE)
 {
 /* A context switch occurred within xTaskResumeAll(). */
 }
 else
 {
 /* A context switch did not occur within xTaskResumeAll(). */
 }
 }
}

Listing 90 Example use of xTaskResumeAll()

142

2.49 xTaskResumeFromISR()

#include “FreeRTOS.h”
#include “task.h”

BaseType_t xTaskResumeFromISR(TaskHandle_t pxTaskToResume);

Listing 91 xTaskResumeFromISR() function prototype

Summary

A version of vTaskResume() that can be called from an interrupt service routine.

Parameters

pxTaskToResume The handle of the task being resumed (transitioned out of the Suspended

state). This is the subject task.

To obtain a task’s handle create the task using xTaskCreate() and make

use of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s name

in a call to xTaskGetHandle().

Return Values

pdTRUE Returned if the task being resumed (unblocked) has a priority equal to or higher

than the currently executing task (the task that was interrupted) – meaning a

context switch should be performed before exiting the interrupt.

pdFALSE Returned if the task being resumed has a priority lower that the currently executing

task (the task that was interrupted) – meaning it is not necessary to perform a

context switch before exiting the interrupt.

Notes

A task can be suspended by calling vTaskSuspend(). While in the Suspended state the task

will not be selected to enter the Running state. vTaskResume() and xTaskResumeFromISR()

can be used to resume (un-suspend) a suspended task. xTaskResumeFromISR() can be

called from an interrupt, but vTaskResume() cannot.

 143

Calls to vTaskSuspend() do not maintain a nesting count. A task that has been suspended by

one of more calls to vTaskSuspend() will always be un-suspended by a single call to

vTaskResume() or xTaskResumeFromISR().

xTaskResumeFromISR() must not be used to synchronize a task with an interrupt. Doing so

will result in interrupt events being missed if the interrupt events occur faster than the

execution of its associated task level handling functions. Task and interrupt synchronization

can be achieved safely using a binary or counting semaphore because the semaphore will

latch events.

144

Example

TaskHandle_t xHandle;

void vAFunction(void)
{
 /* Create a task, storing the handle of the created task in xHandle. */
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

 /* ... Rest of code. */
}

void vTaskCode(void *pvParameters)
{
 /* The task being suspended and resumed. */
 for(;;)
 {
 /* ... Perform some function here. */

 /* The task suspends itself by using NULL as the parameter to vTaskSuspend()
 in place of a valid task handle. */
 vTaskSuspend(NULL);

 /* The task is now suspended, so will not reach here until the ISR resumes
 (un-suspends) it. */
 }
}

void vAnExampleISR(void)
{
BaseType_t xYieldRequired;

 /* Resume the suspended task. */
 xYieldRequired = xTaskResumeFromISR(xHandle);

 if(xYieldRequired == pdTRUE)
 {
 /* A context switch should now be performed so the ISR returns directly to
 the resumed task. This is because the resumed task had a priority that was
 equal to or higher than the task that is currently in the Running state.
 NOTE: The syntax required to perform a context switch from an ISR varies
 from port to port, and from compiler to compiler. Check the documentation and
 examples for the port being used to find the syntax required by your
 application. It is likely that this if() statement can be replaced by a
 single call to portYIELD_FROM_ISR() [or portEND_SWITCHING_ISR()] using
 xYieldRequired as the macro parameter:
 portYIELD_FROM_ISR(xYieldRequired);*/
 portYIELD_FROM_ISR();
 }
}

Listing 92 Example use of xTaskResumeFromISR()

 145

2.50 vTaskSetApplicationTaskTag()

#include “FreeRTOS.h”
#include “task.h”

void vTaskSetApplicationTaskTag(TaskHandle_t xTask, TaskHookFunction_t pxTagValue);

Listing 93 vTaskSetApplicationTaskTag() function prototype

Summary

This function is intended for advanced users only.

The vTaskSetApplicationTaskTag() API function can be used to assign a ‘tag’ value to a task.

The meaning and use of the tag value is defined by the application writer. The kernel itself will

not normally access the tag value.

Parameters

xTask The handle of the task to which a tag value is being assigned. This is the

subject task.

A task can assign a tag value to itself by either using its own task handle or by

using NULL in place of a valid task handle.

pxTagValue The value being assigned as the tag value of the subject task. This is of type

TaskHookFunction_t to permit a function pointer to be assigned to the tag,

although, indirectly by casting, tag values can be of any type.

Return Values

None.

Notes

The tag value can be used to hold a function pointer. When this is done the function assigned

to the tag value can be called using the xTaskCallApplicationTaskHook() API function. This

technique is in effect assigning a callback function to the task. It is common for such a

callback to be used in combination with the traceTASK_SWITCHED_IN() macro to implement

an execution trace feature.

146

configUSE_APPLICATION_TASK_TAG must be set to 1 in FreeRTOSConfig.h for

vTaskSetApplicationTaskTag() to be available.

Example

/* In this example, an integer is set as the task tag value. */
void vATask(void *pvParameters)
{
 /* Assign a tag value of 1 to the currently executing task. The (void *) cast
 is used to prevent compiler warnings. */
 vTaskSetApplicationTaskTag(NULL, (void *) 1);

 for(;;)
 {
 /* Rest of task code goes here. */
 }
}

/* In this example a callback function is assigned as the task tag. First define the
callback function - this must have type TaskHookFunction_t, as per this example. */
static BaseType_t prvExampleTaskHook(void * pvParameter)
{
 /* Perform some action - this could be anything from logging a value, updating
 the task state, outputting a value, etc. */

 return 0;
}

/* Now define the task that sets prvExampleTaskHook() as its hook/tag value. This is
in effect registering the task callback function. */
void vAnotherTask(void *pvParameters)
{
 /* Register a callback function for the currently running (calling) task. */
 vTaskSetApplicationTaskTag(NULL, prvExampleTaskHook);

 for(;;)
 {
 /* Rest of task code goes here. */
 }
}

/* [As an example use of the hook (callback)] Define the traceTASK_SWITCHED_OUT()
macro to call the hook function. The kernel will then automatically call the task
hook each time the task is switched out. This technique can be used to generate
an execution trace. pxCurrentTCB references the currently executing task. */
#define traceTASK_SWITCHED_OUT() xTaskCallApplicationTaskHook(pxCurrentTCB, 0)

Listing 94 Example use of vTaskSetApplicationTaskTag()

 147

2.51 vTaskSetThreadLocalStoragePointer()

#include “FreeRTOS.h”
#include “task.h”

void vTaskSetThreadLocalStoragePointer(TaskHandle_t xTaskToSet,
 BaseType_t xIndex,
 void *pvValue);

Listing 95 vTaskSetThreadLocalStoragePointer() function prototype

Summary

Thread local storage (or TLS) allows the application writer to store values inside a task's

control block, making the value specific to (local to) the task itself, and allowing each task to

have its own unique value.

Each task has its own array of pointers that can be used as thread local storage. The number

of indexes in the array is set by the configNUM_THREAD_LOCAL_STORAGE_POINTERS

compile time configuration constant in FreeRTOSConfig.h.

vTaskSetThreadLocalStoragePointer() sets the value of an index in the array, effectively

storing a thread local value.

Parameters

xTaskToSet The handle of the task to which the thread local data is being written.

A task can write to its own thread local data by using NULL as the parameter

value..

xIndex The index into the thread local storage array to which data is being written.

pvValue The value to write into the into the index specified by xIndex.

Return Values

None.

148

Example

uint32_t ulVariable;

/* Write the 32-bit 0x12345678 value directly into index 1 of the thread local
storage array. Passing NULL as the task handle has the effect of writing to the
calling task's thread local storage array. */
vTaskSetThreadLocalStoragePointer(NULL, /* Task handle. */
 1, /* Index into the array. */
 (void *) 0x12345678);

/* Store the value of the 32-bit variable ulVariable to index 0 of the calling
task's thread local storage array. */
ulVariable = ERROR_CODE;
vTaskSetThreadLocalStoragePointer(NULL, /* Task handle. */
 0, /* Index into the array. */
 (void *) &ulVariable);

Listing 96 Example use of vTaskSetThreadLocalStoragePointer()

 149

2.52 vTaskSetTimeOutState()

#include “FreeRTOS.h”
#include “task.h”

void vTaskSetTimeOutState(TimeOut_t * const pxTimeOut);

Listing 97 vTaskSetTimeOutState() function prototype

Summary

This function is intended for advanced users only.

A task can enter the Blocked state to wait for an event. Typically, the task will not wait in the

Blocked state indefinitely, but instead a timeout period will be specified. The task will be

removed from the Blocked state if the timeout period expires before the event the task is

waiting for occurs.

If a task enters and exits the Blocked state more than once while it is waiting for the event to

occur then the timeout used each time the task enters the Blocked state must be adjusted to

ensure the total of all the time spent in the Blocked state does not exceed the originally

specified timeout period. xTaskCheckForTimeOut() performs the adjustment, taking into

account occasional occurrences such as tick count overflows, which would otherwise make a

manual adjustment prone to error.

vTaskSetTimeOutState() is used with xTaskCheckForTimeOut(). vTaskSetTimeOutState() is

called to set the initial condition, after which xTaskCheckForTimeOut() can be called to check

for a timeout condition, and adjust the remaining block time if a timeout has not occurred.

Parameters

pxTimeOut A pointer to a structure that will be initialized to hold information necessary to

determine if a timeout has occurred.

150

Example

/* Driver library function used to receive uxWantedBytes from an Rx buffer that is filled
by a UART interrupt. If there are not enough bytes in the Rx buffer then the task enters
the Blocked state until it is notified that more data has been placed into the buffer. If
there is still not enough data then the task re-enters the Blocked state, and
xTaskCheckForTimeOut() is used to re-calculate the Block time to ensure the total amount
of time spent in the Blocked state does not exceed MAX_TIME_TO_WAIT. This continues until
either the buffer contains at least uxWantedBytes bytes, or the total amount of time spent
in the Blocked state reaches MAX_TIME_TO_WAIT – at which point the task reads however many
bytes are available up to a maximum of uxWantedBytes. */
size_t xUART_Receive(uint8_t *pucBuffer, size_t uxWantedBytes)
{
size_t uxReceived = 0;
TickType_t xTicksToWait = MAX_TIME_TO_WAIT;
TimeOut_t xTimeOut;

 /* Initialize xTimeOut. This records the time at which this function was entered. */
 vTaskSetTimeOutState(&xTimeOut);

 /* Loop until the buffer contains the wanted number of bytes, or a timeout occurs. */
 while(UART_bytes_in_rx_buffer(pxUARTInstance) < uxWantedBytes)
 {
 /* The buffer didn’t contain enough data so this task is going to enter the Blocked
 state. Adjusting xTicksToWait to account for any time that has been spent in the
 Blocked state within this function so far to ensure the total amount of time spent
 in the Blocked state does not exceed MAX_TIME_TO_WAIT. */
 if(xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) != pdFALSE)
 {
 /* Timed out before the wanted number of bytes were available, exit the loop. */
 break;
 }

 /* Wait for a maximum of xTicksToWait ticks to be notified that the receive
 interrupt has placed more data into the buffer. */
 ulTaskNotifyTake(pdTRUE, xTicksToWait);
 }

 /* Attempt to read uxWantedBytes from the receive buffer into pucBuffer. The actual
 number of bytes read (which might be less than uxWantedBytes) is returned. */
 uxReceived = UART_read_from_receive_buffer(pxUARTInstance, pucBuffer, uxWantedBytes);

 return uxReceived;
}

Listing 98 Example use of vTaskSetTimeOutState() and xTaskCheckForTimeOut()

 151

2.53 vTaskStartScheduler()

#include “FreeRTOS.h”
#include “task.h”

void vTaskStartScheduler(void);

Listing 99 vTaskStartScheduler() function prototype

Summary

Starts the FreeRTOS scheduler running.

Typically, before the scheduler has been started, main() (or a function called by main()) will be

executing. After the scheduler has been started, only tasks and interrupts will ever execute.

Starting the scheduler causes the highest priority task that was created while the scheduler

was in the Initialization state to enter the Running state.

Parameters

None.

Return Values

The Idle task is created automatically when the scheduler is started. vTaskStartScheduler()

will only return if there is not enough FreeRTOS heap memory available for the Idle task to be

created.

Notes

Ports that execute on ARM7 and ARM9 microcontrollers require the processor to be in

Supervisor mode before vTaskStartScheduler() is called.

152

Example

TaskHandle_t xHandle;

/* Define a task function. */
void vATask(void)
{
 for(;;)
 {
 /* Task code goes here. */
 }
}

void main(void)
{
 /* Create at least one task, in this case the task function defined above is
 created. Calling vTaskStartScheduler() before any tasks have been created
 will cause the idle task to enter the Running state. */
 xTaskCreate(vTaskCode, "task name", STACK_SIZE, NULL, TASK_PRIORITY, NULL);

 /* Start the scheduler. */
 vTaskStartScheduler();

 /* This code will only be reached if the idle task could not be created inside
 vTaskStartScheduler(). An infinite loop is used to assist debugging by
 ensuring this scenario does not result in main() exiting. */
 for(;;);
}

Listing 100 Example use of vTaskStartScheduler()

 153

2.54 vTaskStepTick()

#include “FreeRTOS.h”
#include “task.h”

void vTaskStepTick(TickType_t xTicksToJump);

Summary

If the RTOS is configured to use tickless idle functionality then the tick interrupt will be

stopped, and the microcontroller placed into a low power state, whenever the Idle task is the

only task able to execute. Upon exiting the low power state the tick count value must be

corrected to account for the time that passed while it was stopped.

If a FreeRTOS port includes a default portSUPPRESS_TICKS_AND_SLEEP()

implementation, then vTaskStepTick() is used internally to ensure the correct tick count value

is maintained. vTaskStepTick() is a public API function to allow the default

portSUPPRESS_TICKS_AND_SLEEP() implementation to be overridden, and for a

portSUPPRESS_TICKS_AND_SLEEP() to be provided if the port being used does not provide

a default.

Parameters

xTicksToJump The number of RTOS tick periods that passed between the tick interrupt

being stopped and restarted (how long the tick interrupt was suppressed for).

For correct operation the parameter must be less than or equal to the

portSUPPRESS_TICKS_AND_SLEEP() parameter.

Return Values

None.

Notes

configUSE_TICKLESS_IDLE must be set to 1 in FreeRTOSConfig.h for vTaskStepTick() to be

available.

154

Example

/* This is an example of how portSUPPRESS_TICKS_AND_SLEEP() might be implemented by
an application writer. This basic implementation will introduce inaccuracies in the
tracking of the time maintained by the kernel in relation to calendar time. Official
FreeRTOS implementations account for these inaccuracies as much as possible.

Only vTaskStepTick() is part of the FreeRTOS API. The other function calls are for
demonstration only. */

/* First define the portSUPPRESS_TICKS_AND_SLEEP() macro. The parameter is the time,
in ticks, until the kernel next needs to execute. */
#define portSUPPRESS_TICKS_AND_SLEEP(xIdleTime) vApplicationSleep(xIdleTime)

/* Define the function that is called by portSUPPRESS_TICKS_AND_SLEEP(). */
void vApplicationSleep(TickType_t xExpectedIdleTime)
{
unsigned long ulLowPowerTimeBeforeSleep, ulLowPowerTimeAfterSleep;

 /* Read the current time from a time source that will remain operational when
 the microcontroller is in a low power state. */
 ulLowPowerTimeBeforeSleep = ulGetExternalTime();

 /* Stop the timer that is generating the tick interrupt. */
 prvStopTickInterruptTimer();

 /* Configure an interrupt to bring the microcontroller out of its low power state
 at the time the kernel next needs to execute. The interrupt must be generated
 from a source that remains operational when the microcontroller is in a low
 power state. */
 vSetWakeTimeInterrupt(xExpectedIdleTime);

 /* Enter the low power state. */
 prvSleep();

 /* Determine how long the microcontroller was actually in a low power state for,
 which will be less than xExpectedIdleTime if the microcontroller was brought out
 of low power mode by an interrupt other than that configured by the
 vSetWakeTimeInterrupt() call. Note that the scheduler is suspended before
 portSUPPRESS_TICKS_AND_SLEEP() is called, and resumed when
 portSUPPRESS_TICKS_AND_SLEEP() returns. Therefore no other tasks will execute
 until this function completes. */
 ulLowPowerTimeAfterSleep = ulGetExternalTime();

 /* Correct the kernels tick count to account for the time the microcontroller
 spent in its low power state. */
 vTaskStepTick(ulLowPowerTimeAfterSleep – ulLowPowerTimeBeforeSleep);

 /* Restart the timer that is generating the tick interrupt. */
 prvStartTickInterruptTimer();
}

Listing 101 Example use of vTaskStepTick()

 155

2.55 vTaskSuspend()

#include “FreeRTOS.h”
#include “task.h”

void vTaskSuspend(TaskHandle_t pxTaskToSuspend);

Listing 102 vTaskSuspend() function prototype

Summary

Places a task into the Suspended state. A task that is in the Suspended state will never be

selected to enter the Running state.

The only way of removing a task from the Suspended state is to make it the subject of a call to

vTaskResume().

Parameters

pxTaskToSuspend The handle of the task being suspended.

To obtain a task’s handle create the task using xTaskCreate() and make

use of the pxCreatedTask parameter, or create the task using

xTaskCreateStatic() and store the returned value, or use the task’s name

in a call to xTaskGetHandle().

A task may suspend itself by passing NULL in place of a valid task

handle.

Return Values

None.

Notes

If FreeRTOS version 6.1.0 or later is being used, then vTaskSuspend() can be called to place

a task into the Suspended state before the scheduler has been started (before

vTaskStartScheduler() has been called). This will result in the task (effectively) starting in the

Suspended state.

156

Example

void vAFunction(void)
{
TaskHandle_t xHandle;

 /* Create a task, storing the handle of the created task in xHandle. */
 if(xTaskCreate(vTaskCode,
 "Demo task",
 STACK_SIZE,
 NULL,
 PRIORITY,
 &xHandle
) != pdPASS)
 {
 /* The task was not created successfully. */
 }
 else
 {
 /* Use the handle of the created task to place the task in the Suspended
 state. From FreeRTOS version 6.1.0, this can be done before the Scheduler
 has been started. */
 vTaskSuspend(xHandle);

 /* The created task will not run during this period, unless another task
 calls vTaskResume(xHandle). */

 /* Use a NULL parameter to suspend the calling task. */
 vTaskSuspend(NULL);

 /* This task can only execute past the call to vTaskSuspend(NULL) if
 another task has resumed (un-suspended) it using a call to vTaskResume(). */
 }
}

Listing 103 Example use of vTaskSuspend()

 157

2.56 vTaskSuspendAll()

#include “FreeRTOS.h”
#include “task.h”

void vTaskSuspendAll(void);

Listing 104 vTaskSuspendAll() function prototype

Summary

Suspends the scheduler. Suspending the scheduler prevents a context switch from occurring

but leaves interrupts enabled. If an interrupt requests a context switch while the scheduler is

suspended, then the request is held pending and is performed only when the scheduler is

resumed (un-suspended).

Parameters

None.

Return Values

None.

Notes

Calls to xTaskResumeAll() transition the scheduler out of the Suspended state following a

previous call to vTaskSuspendAll().

Calls to vTaskSuspendAll() can be nested. The same number of calls must be made to

xTaskResumeAll() as have previously been made to vTaskSuspendAll() before the scheduler

will leave the Suspended state and re-enter the Active state.

xTaskResumeAll() must only be called from an executing task and therefore must not be

called while the scheduler is in the Initialization state (prior to the scheduler being started).

Other FreeRTOS API functions must not be called while the scheduler is suspended.

158

Example

/* A function that suspends then resumes the scheduler. */
void vDemoFunction(void)
{
 /* This function suspends the scheduler. When it is called from vTask1 the
 scheduler is already suspended, so this call creates a nesting depth of 2. */
 vTaskSuspendAll();

 /* Perform an action here. */

 /* As calls to vTaskSuspendAll() are nested, resuming the scheduler here will
 not cause the scheduler to re-enter the active state. */
 xTaskResumeAll();
}

void vTask1(void * pvParameters)
{
 for(;;)
 {
 /* Perform some actions here. */

 /* At some point the task wants to perform an operation during which it does
 not want to get swapped out, or it wants to access data which is also
 accessed from another task (but not from an interrupt). It cannot use
 taskENTER_CRITICAL()/taskEXIT_CRITICAL() as the length of the operation may
 cause interrupts to be missed. */

 /* Prevent the scheduler from performing a context switch. */
 vTaskSuspendAll();

 /* Perform the operation here. There is no need to use critical sections as
 the task has all the processing time other than that utilized by interrupt
 service routines.*/

 /* Calls to vTaskSuspendAll() can be nested so it is safe to call a (non API)
 function which also contains calls to vTaskSuspendAll(). API functions
 should not be called while the scheduler is suspended. */
 vDemoFunction();

 /* The operation is complete. Set the scheduler back into the Active
 state. */
 if(xTaskResumeAll() == pdTRUE)
 {
 /* A context switch occurred within xTaskResumeAll(). */
 }
 else
 {
 /* A context switch did not occur within xTaskResumeAll(). */
 }
 }
}

Listing 105 Example use of vTaskSuspendAll()

 159

2.57 taskYIELD()

#include “FreeRTOS.h”
#include “task.h”

void taskYIELD(void);

Listing 106 taskYIELD() macro prototype

Summary

Yield to another task of equal priority.

Yielding is where a task volunteers to leave the Running state, without being pre-empted, and

before its time slice has been fully utilized.

Parameters

None.

Return Values

None.

Notes

taskYIELD() must only be called from an executing task and therefore must not be called while

the scheduler is in the Initialization state (prior to the scheduler being started).

When a task calls taskYIELD(), the scheduler will select another Ready state task of equal

priority to enter the Running state in its place. If there are no other Ready state tasks of equal

priority then the task that called taskYIELD() will itself be transitioned straight back into the

Running state.

The scheduler will only ever select a task of equal priority to the task that called taskYIELD()

because, if there were any tasks of higher priority that were in the Ready state, the task that

called taskYIELD() would not have been executing in the first place.

160

Example

void vATask(void * pvParameters)
{
 for(;;)
 {
 /* Perform some actions. */

 /* If there are any tasks of equal priority to this task that are in the
 Ready state then let them execute now - even though this task has not used
 all of its time slice. */
 taskYIELD();

 /* If there were any tasks of equal priority to this task in the Ready state,
 then they will have executed before this task reaches here. */
 }
}

Listing 107 Example use of taskYIELD()

 161

Chapter 3

Queue API

162

3.1 vQueueAddToRegistry()

#include “FreeRTOS.h”
#include “queue.h”

void vQueueAddToRegistry(QueueHandle_t xQueue, char *pcQueueName);

Listing 108 vQueueAddToRegistry() function prototype

Summary

Assigns a human readable name to a queue, and adds the queue to the queue registry.

Parameters

xQueue The handle of the queue that will be added to the registry. Semaphore

handles can also be used.

pcQueueName A descriptive name for the queue or semaphore. This is not used by

FreeRTOS in any way. It is included purely as a debugging aid. Identifying a

queue or semaphore by a human readable name is much simpler than

attempting to identify it by its handle.

Return Values

None.

Notes

The queue registry is used by kernel aware debuggers:

1. It allows a text name to be associated with a queue or semaphore for easy queue and

semaphore identification in a debugging interface.

2. It provides a means for a debugger to locate queue and semaphore structures.

The configQUEUE_REGISTRY_SIZE kernel configuration constant defines the maximum

number of queues and semaphores that can be registered at any one time. Only the queues

 163

and semaphores that need to be viewed in a kernel aware debugging interface need to be

registered.

The queue registry is only required when a kernel aware debugger is being used. At all other

times it has no purpose and can be omitted by setting configQUEUE_REGISTRY_SIZE to 0,

or by omitting the configQUEUE_REGISTRY_SIZE configuration constant definition

altogether.

Deleting a registered queue will automatically remove it from the registry.

Example

void vAFunction(void)
{
QueueHandle_t xQueue;

 /* Create a queue big enough to hold 10 chars. */
 xQueue = xQueueCreate(10, sizeof(char));

 /* The created queue needs to be viewable in a kernel aware debugger, so
 add it to the registry. */
 vQueueAddToRegistry(xQueue, "AMeaningfulName");
 }

Listing 109 Example use of vQueueAddToRegistry()

164

3.2 xQueueAddToSet()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore,
 QueueSetHandle_t xQueueSet);

Listing 110 xQueueAddToSet() function prototype

Summary

Adds a queue or semaphore to a queue set that was previously created by a call to

xQueueCreateSet().

A receive (in the case of a queue) or take (in the case of a semaphore) operation must not be

performed on a member of a queue set unless a call to xQueueSelectFromSet() has first

returned a handle to that set member.

Parameters

xQueueOrSemaphore The handle of the queue or semaphore being added to the queue set

(cast to an QueueSetMemberHandle_t type).

xQueueSet The handle of the queue set to which the queue or semaphore is

being added.

Return Values

pdPASS The queue or semaphore was successfully added to the queue set.

pdFAIL The queue or semaphore could not be added to the queue set because it is

already a member of a different set.

Notes

configUSE_QUEUE_SETS must be set to 1 in FreeRTOSConfig.h for the xQueueAddToSet()

API function to be available.

 165

Example

See the example provided for the xQueueCreateSet() function in this manual.

166

3.3 xQueueCreate()

#include “FreeRTOS.h”
#include “queue.h”

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength,
 UBaseType_t uxItemSize);

Listing 111 xQueueCreate() function prototype

Summary

Creates a new queue and returns a handle by which the queue can be referenced.

Each queue requires RAM that is used to hold the queue state, and to hold the items that are

contained in the queue (the queue storage area). If a queue is created using xQueueCreate()

then the required RAM is automatically allocated from the FreeRTOS heap. If a queue is

created using xQueueCreateStatic() then the RAM is provided by the application writer, which

results in a greater number of parameters, but allows the RAM to be statically allocated at

compile time.

Parameters

uxQueueLength The maximum number of items that the queue being created can hold at

any one time.

uxItemSize The size, in bytes, of each data item that can be stored in the queue.

Return Values

NULL The queue cannot be created because there is insufficient heap memory

available for FreeRTOS to allocate the queue data structures and storage

area.

Any other value The queue was created successfully. The returned value is a handle by

which the created queue can be referenced.

 167

Notes

Queues are used to pass data between tasks, and between tasks and interrupts.

Queues can be created before or after the scheduler has been started.

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, or simply

left undefined, for this function to be available.

Example

/* Define the data type that will be queued. */
typedef struct A_Message
{
 char ucMessageID;
 char ucData[20];
} AMessage;

/* Define the queue parameters. */
#define QUEUE_LENGTH 5
#define QUEUE_ITEM_SIZE sizeof(AMessage)

int main(void)
{
QueueHandle_t xQueue;

 /* Create the queue, storing the returned handle in the xQueue variable. */
 xQueue = xQueueCreate(QUEUE_LENGTH, QUEUE_ITEM_SIZE);
 if(xQueue == NULL)
 {
 /* The queue could not be created. */
 }

 /* Rest of code goes here. */
}

Listing 112 Example use of xQueueCreate()

168

3.4 xQueueCreateSet()

#include “FreeRTOS.h”
#include “queue.h”

QueueSetHandle_t xQueueCreateSet(const UBaseType_t uxEventQueueLength);

Listing 113 xQueueCreateSet() function prototype

Summary

Queue sets provide a mechanism to allow an RTOS task to block (pend) on a read operation

from multiple RTOS queues or semaphores simultaneously. Note that there are simpler

alternatives to using queue sets. See the Blocking on Multiple Objects page of the

FreeRTOS.org website for more information.

A queue set must be explicitly created using a call to xQueueCreateSet() before it can be

used. Once created, standard FreeRTOS queues and semaphores can be added to the set

using calls to xQueueAddToSet(). xQueueSelectFromSet() is then used to determine which, if

any, of the queues or semaphores contained in the set is in a state where a queue read or

semaphore take operation would be successful.

Parameters

uxEventQueueLength Queue sets store events that occur on the queues and semaphores

contained in the set. uxEventQueueLength specifies the maximum

number of events that can be queued at once.

To be absolutely certain that events are not lost uxEventQueueLength

must be set to the sum of the lengths of the queues added to the set,

where binary semaphores and mutexes have a length of 1, and

counting semaphores have a length set by their maximum count

value. For example:

• If a queue set is to hold a queue of length 5, another queue of

length 12, and a binary semaphore, then uxEventQueueLength

should be set to (5 + 12 + 1), or 18.

• If a queue set is to hold three binary semaphores then

 169

uxEventQueueLength should be set to (1 + 1 + 1), or 3.

• If a queue set is to hold a counting semaphore that has a

maximum count of 5, and a counting semaphore that has a

maximum count of 3, then uxEventQueueLength should be set

to (5 + 3), or 8.

Return Values

NULL The queue set could not be created.

Any other value The queue set was created successfully. The returned value is a handle by

which the created queue set can be referenced.

Notes

Blocking on a queue set that contains a mutex will not cause the mutex holder to inherit the

priority of the blocked task.

An additional 4 bytes of RAM are required for each space in every queue added to a queue

set. Therefore a counting semaphore that has a high maximum count value should not be

added to a queue set.

A receive (in the case of a queue) or take (in the case of a semaphore) operation must not be

performed on a member of a queue set unless a call to xQueueSelectFromSet() has first

returned a handle to that set member.

configUSE_QUEUE_SETS must be set to 1 in FreeRTOSConfig.h for the xQueueCreateSet()

API function to be available.

170

Example

/* Define the lengths of the queues that will be added to the queue set. */
#define QUEUE_LENGTH_1 10
#define QUEUE_LENGTH_2 10

/* Binary semaphores have an effective length of 1. */
#define BINARY_SEMAPHORE_LENGTH 1

/* Define the size of the item to be held by queue 1 and queue 2 respectively. The
values used here are just for demonstration purposes. */
#define ITEM_SIZE_QUEUE_1 sizeof(uint32_t)
#define ITEM_SIZE_QUEUE_2 sizeof(something_else_t)

/* The combined length of the two queues and binary semaphore that will be added to
the queue set. */
#define COMBINED_LENGTH (QUEUE_LENGTH_1 + QUEUE_LENGTH_2 + BINARY_SEMAPHORE_LENGTH)

void vAFunction(void)
{
static QueueSetHandle_t xQueueSet;
QueueHandle_t xQueue1, xQueue2, xSemaphore;
QueueSetMemberHandle_t xActivatedMember;
uint32_t xReceivedFromQueue1;
something_else_t xReceivedFromQueue2;

 /* Create a queue set large enough to hold an event for every space in every
 queue and semaphore that is to be added to the set. */
 xQueueSet = xQueueCreateSet(COMBINED_LENGTH);

 /* Create the queues and semaphores that will be contained in the set. */
 xQueue1 = xQueueCreate(QUEUE_LENGTH_1, ITEM_SIZE_QUEUE_1);
 xQueue2 = xQueueCreate(QUEUE_LENGTH_2, ITEM_SIZE_QUEUE_2);

 /* Create the semaphore that is being added to the set. */
 xSemaphore = xSemaphoreCreateBinary();

 /* Take the semaphore, so it starts empty. A block time of zero can be used
 as the semaphore is guaranteed to be available - it has just been created. */
 xSemaphoreTake(xSemaphore, 0);

 /* Add the queues and semaphores to the set. Reading from these queues and
 semaphore can only be performed after a call to xQueueSelectFromSet() has
 returned the queue or semaphore handle from this point on. */
 xQueueAddToSet(xQueue1, xQueueSet);
 xQueueAddToSet(xQueue2, xQueueSet);
 xQueueAddToSet(xSemaphore, xQueueSet);

 /* CONTINUED ON NEXT PAGE */

 171

 /* CONTINUED FROM PREVIOUS PAGE */

 for(;;)
 {
 /* Block to wait for something to be available from the queues or semaphore
 that have been added to the set. Don't block longer than 200ms. */
 xActivatedMember = xQueueSelectFromSet(xQueueSet, pdMS_TO_TICKS(200));

 /* Which set member was selected? Receives/takes can use a block time of
 zero as they are guaranteed to pass because xQueueSelectFromSet() would not
 have returned the handle unless something was available. */
 if(xActivatedMember == xQueue1)
 {
 xQueueReceive(xActivatedMember, &xReceivedFromQueue1, 0);
 vProcessValueFromQueue1(xReceivedFromQueue1);
 }
 else if(xActivatedQueue == xQueue2)
 {
 xQueueReceive(xActivatedMember, &xReceivedFromQueue2, 0);
 vProcessValueFromQueue2(&xReceivedFromQueue2);
 }
 else if(xActivatedQueue == xSemaphore)
 {
 /* Take the semaphore to make sure it can be "given" again. */
 xSemaphoreTake(xActivatedMember, 0);
 vProcessEventNotifiedBySemaphore();
 break;
 }
 else
 {
 /* The 200ms block time expired without an RTOS queue or semaphore
 being ready to process. */
 }
 }
}

Listing 114 Example use of xQueueCreateSet() and other queue set API functions

172

3.5 xQueueCreateStatic()

#include “FreeRTOS.h”
#include “queue.h”

QueueHandle_t xQueueCreateStatic(UBaseType_t uxQueueLength,
 UBaseType_t uxItemSize,
 uint8_t *pucQueueStorageBuffer,
 StaticQueue_t *pxQueueBuffer);

Listing 115 xQueueCreateStatic() function prototype

Summary

Creates a new queue and returns a handle by which the queue can be referenced.

Each queue requires RAM that is used to hold the queue state, and to hold the items that are

contained in the queue (the queue storage area). If a queue is created using xQueueCreate()

then the required RAM is automatically allocated from the FreeRTOS heap. If a queue is

created using xQueueCreateStatic() then the RAM is provided by the application writer, which

results in a greater number of parameters, but allows the RAM to be statically allocated at

compile time.

Parameters

uxQueueLength The maximum number of items that the queue being created can

hold at any one time.

uxItemSize The size, in bytes, of each data item that can be stored in the

queue.

pucQueueStorageBuffer If uxItemSize is not zero then pucQueueStorageBuffer must point to

a uint8_t array that is at least large enough to hold the maximum

number of items that can be in the queue at any one time – which is

(uxQueueLength * uxItemSize) bytes.

If uxItemSize is zero then pucQueueStorageBuffer can be NULL as

no date will be copied into the queue storage area.

pxQueueBuffer Must point to a variable of type StaticQueue_t, which will be used to

hold the queue’s data structure.

 173

Return Values

NULL The queue was not created because pxQueueBuffer was NULL.

Any other value The queue was created and the value returned is the handle of the created

queue.

Notes

Queues are used to pass data between tasks, and between tasks and interrupts.

Queues can be created before or after the scheduler has been started.

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for this

function to be available.

Example

/* The queue is to be created to hold a maximum of 10 uint64_t variables. */
#define QUEUE_LENGTH 10
#define ITEM_SIZE sizeof(uint64_t)

/* The variable used to hold the queue's data structure. */
static StaticQueue_t xStaticQueue;

/* The array to use as the queue's storage area. This must be at least
(uxQueueLength * uxItemSize) bytes. */
uint8_t ucQueueStorageArea[QUEUE_LENGTH * ITEM_SIZE];

void vATask(void *pvParameters)
{
QueueHandle_t xQueue;

 /* Create a queue capable of containing 10 uint64_t values. */
 xQueue = xQueueCreateStatic(QUEUE_LENGTH,
 ITEM_SIZE,
 ucQueueStorageArea,
 &xStaticQueue);

 /* pxQueueBuffer was not NULL so xQueue should not be NULL. */
 configASSERT(xQueue);
 }

Listing 116 Example use of xQueueCreateStatic()

174

3.6 vQueueDelete()

#include “FreeRTOS.h”
#include “queue.h”

void vQueueDelete(TaskHandle_t pxQueueToDelete);

Listing 117 vQueueDelete() function prototype

Summary

Deletes a queue that was previously created using a call to xQueueCreate() or

xQueueCreateStatic(). vQueueDelete() can also be used to delete a semaphore.

Parameters

pxQueueToDelete The handle of the queue being deleted. Semaphore handles can also be

used.

Return Values

None

Notes

Queues are used to pass data between tasks and between tasks and interrupts.

Tasks can opt to block on a queue/semaphore (with an optional timeout) if they attempt to

send data to the queue/semaphore and the queue/semaphore is already full, or they attempt

to receive data from a queue/semaphore and the queue/semaphore is already empty. A

queue/semaphore must not be deleted if there are any tasks currently blocked on it.

 175

Example

/* Define the data type that will be queued. */
typedef struct A_Message
{
 char ucMessageID;
 char ucData[20];
} AMessage;

/* Define the queue parameters. */
#define QUEUE_LENGTH 5
#define QUEUE_ITEM_SIZE sizeof(AMessage)

int main(void)
{
QueueHandle_t xQueue;

 /* Create the queue, storing the returned handle in the xQueue variable. */
 xQueue = xQueueCreate(QUEUE_LENGTH, QUEUE_ITEM_SIZE);
 if(xQueue == NULL)
 {
 /* The queue could not be created. */
 }
 else
 {
 /* Delete the queue again by passing xQueue to vQueueDelete(). */
 vQueueDelete(xQueue);
 }
}

Listing 118 Example use of vQueueDelete()

176

3.7 pcQueueGetName()

#include “FreeRTOS.h”
#include “queue.h”

const char *pcQueueGetName(QueueHandle_t xQueue);

Listing 119 pcQueueGetName() function prototype

Summary

Queries the human readable text name of a queue.

A queue will only have a text name if it has been added to the queue registry. See the

vQueueAddToRegistry() API function.

Parameters

xQueue The handle of the queue being queried.

Return Values

Queue names are standard NULL terminated C strings. The value returned is a pointer to the

name of the queue being queried.

 177

3.8 xQueueIsQueueEmptyFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueIsQueueEmptyFromISR(const QueueHandle_t pxQueue);

Listing 120 xQueueIsQueueEmptyFromISR() function prototype

Summary

Queries a queue to see if it contains items, or if it is already empty. Items cannot be received

from a queue if the queue is empty.

This function should only be used from an ISR.

Parameters

pxQueue The queue being queried.

Return Values

pdFALSE The queue being queried is empty (does not contain any data items) at

the time xQueueIsQueueEmptyFromISR() was called.

Any other value The queue being queried was not empty (contained data items) at the

time xQueueIsQueueEmptyFromISR() was called.

Notes

None.

178

3.9 xQueueIsQueueFullFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueIsQueueFullFromISR(const QueueHandle_t pxQueue);

Listing 121 xQueueIsQueueFullFromISR() function prototype

Summary

Queries a queue to see if it is already full, or if it has space to receive a new item. A queue

can only successfully receive new items when it is not full.

This function should only be used from an ISR.

Parameters

pxQueue The queue being queried.

Return Values

pdFALSE The queue being queried is not full at the time

xQueueIsQueueFullFromISR() was called.

Any other value The queue being queried was full at the time

xQueueIsQueueFullFromISR() was called.

Notes

None.

 179

3.10 uxQueueMessagesWaiting()

#include “FreeRTOS.h”
#include “queue.h”

UBaseType_t uxQueueMessagesWaiting(const QueueHandle_t xQueue);

Listing 122 uxQueueMessagesWaiting() function prototype

Summary

Returns the number of items that are currently held in a queue.

Parameters

xQueue The handle of the queue being queried.

Returned Value

The number of items that are held in the queue being queried at the time that

uxQueueMessagesWaiting() is called.

Example

void vAFunction(QueueHandle_t xQueue)
{
UBaseType_t uxNumberOfItems;

 /* How many items are currently in the queue referenced by the xQueue handle? */
 uxNumberOfItems = uxQueueMessagesWaiting(xQueue);
}

Listing 123 Example use of uxQueueMessagesWaiting()

180

3.11 uxQueueMessagesWaitingFromISR()

#include “FreeRTOS.h”
#include “queue.h”

UBaseType_t uxQueueMessagesWaitingFromISR(const QueueHandle_t xQueue);

Listing 124 uxQueueMessagesWaitingFromISR() function prototype

Summary

A version of uxQueueMessagesWaiting() that can be used from inside an interrupt service

routine.

Parameters

xQueue The handle of the queue being queried.

Returned Value

The number of items that are contained in the queue being queried at the time that

uxQueueMessagesWaitingFromISR() is called.

 181

Example

void vAnInterruptHandler(void)
{
UBaseType_t uxNumberOfItems;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Check the status of the queue, if it contains more than 10 items then wake the
 task that will drain the queue. */

 /* How many items are currently in the queue referenced by the xQueue handle? */
 uxNumberOfItems = uxQueueMessagesWaitingFromISR(xQueue);

 if(uxNumberOfItems > 10)
 {
 /* The task being woken is currently blocked on xSemaphore. Giving the
 semaphore will unblock the task. */
 xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);
 }

 /* If xHigherPriorityTaskWoken is equal to pdTRUE at this point then the task
 that was unblocked by the call to xSemaphoreGiveFromISR() had a priority either
 equal to or greater than the currently executing task (the task that was in
 the Running state when this interrupt occurred). In that case a context switch
 should be performed before leaving this interrupt service routine to ensure the
 interrupt returns to the highest priority ready state task (the task that was
 unblocked). The syntax required to perform a context switch from inside an
 interrupt varies from port to port, and from compiler to compiler. Check the
 web documentation and examples for the port in use to find the correct syntax
 for your application. */
}

Listing 125 Example use of uxQueueMessagesWaitingFromISR()

182

3.12 xQueueOverwrite()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueOverwrite(QueueHandle_t xQueue, const void *pvItemToQueue);

Listing 126 xQueueOverwrite() function prototype

Summary

A version of xQueueSendToBack() that will write to the queue even if the queue is full,

overwriting data that is already held in the queue.

xQueueOverwrite() is intended for use with queues that have a length of one, meaning the

queue is either empty or full.

This function must not be called from an interrupt service routine. See

xQueueOverwriteFromISR() for an alternative which may be used in an interrupt service

routine.

Do not use xQueueOverwrite() to write to a queue that is a member of a queue set.

Parameters

xQueue The handle of the queue to which the data is to be sent.

pvItemToQueue A pointer to the item that is to be placed in the queue. The size of each item

the queue can hold is set when the queue is created, and that many bytes

will be copied from pvItemToQueue into the queue storage area.

Returned Value

xQueueOverwrite() is a macro that calls xQueueGenericSend(), and therefore has the same

return values as xQueueSendToFront(). However, pdPASS is the only value that can be

returned because xQueueOverwrite() will write to the queue even when the queue is already

full.

 183

Example

 void vFunction(void *pvParameters)
 {
 QueueHandle_t xQueue;
 unsigned long ulVarToSend, ulValReceived;

 /* Create a queue to hold one unsigned long value. It is strongly
 recommended *not* to use xQueueOverwrite() on queues that can
 contain more than one value, and doing so will trigger an assertion
 if configASSERT() is defined. */
 xQueue = xQueueCreate(1, sizeof(unsigned long));

 /* Write the value 10 to the queue using xQueueOverwrite(). */
 ulVarToSend = 10;
 xQueueOverwrite(xQueue, &ulVarToSend);

 /* Peeking the queue should now return 10, but leave the value 10 in
 the queue. A block time of zero is used as it is known that the
 queue holds a value. */
 ulValReceived = 0;
 xQueuePeek(xQueue, &ulValReceived, 0);

 if(ulValReceived != 10)
 {
 /* Error, unless another task removed the value. */
 }

 /* The queue is still full. Use xQueueOverwrite() to overwrite the
 value held in the queue with 100. */
 ulVarToSend = 100;
 xQueueOverwrite(xQueue, &ulVarToSend);

 /* This time read from the queue, leaving the queue empty once more.
 A block time of 0 is used again. */
 xQueueReceive(xQueue, &ulValReceived, 0);

 /* The value read should be the last value written, even though the
 queue was already full when the value was written. */
 if(ulValReceived != 100)
 {
 /* Error unless another task is using the same queue. */
 }

 /* ... */
}

Listing 127 Example use of xQueueOverwrite()

184

3.13 xQueueOverwriteFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueOverwriteFromISR(QueueHandle_t xQueue,
 const void *pvItemToQueue,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 128 xQueueOverwriteFromISR() function prototype

Summary

A version of xQueueOverwrite() that can be used in an ISR. xQueueOverwriteFromISR() is

similar to xQueueSendToBackFromISR(), but will write to the queue even if the queue is full,

overwriting data that is already held in the queue.

xQueueOverwriteFromISR() is intended for use with queues that have a length of one,

meaning the queue is either empty or full.

Parameters

xQueue The handle of the queue to which the data is to be sent.

pvItemToQueue A pointer to the item that is to be placed in the queue. The size

of each item the queue can hold is set when the queue is

created, and that many bytes will be copied from

pvItemToQueue into the queue storage area.

pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE if sending to the queue

caused a task to unblock, and the unblocked task has a priority

higher than the currently running task. If

xQueueOverwriteFromISR() sets this value to pdTRUE then a

context switch should be requested before the interrupt is

exited. Refer to the Interrupt Service Routines section of the

documentation for the port being used to see how that is done.

 185

Returned Value

xQueueOverwriteFromISR() is a macro that calls xQueueGenericSendFromISR(), and

therefore has the same return values as xQueueSendToFrontFromISR(). However, pdPASS

is the only value that can be returned because xQueueOverwriteFromISR() will write to the

queue even when the queue is already full.

Example

QueueHandle_t xQueue;

void vFunction(void *pvParameters)
{
 /* Create a queue to hold one unsigned long value. It is strongly
 recommended not to use xQueueOverwriteFromISR() on queues that can
 contain more than one value, and doing so will trigger an assertion
 if configASSERT() is defined. */
 xQueue = xQueueCreate(1, sizeof(unsigned long));
}

void vAnInterruptHandler(void)
{
/* xHigherPriorityTaskWoken must be set to pdFALSE before it is used. */
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
unsigned long ulVarToSend, ulValReceived;

 /* Write the value 10 to the queue using xQueueOverwriteFromISR(). */
 ulVarToSend = 10;
 xQueueOverwriteFromISR(xQueue, &ulVarToSend, &xHigherPriorityTaskWoken);

 /* The queue is full, but calling xQueueOverwriteFromISR() again will still
 pass because the value held in the queue will be overwritten with the
 new value. */
 ulVarToSend = 100;
 xQueueOverwriteFromISR(xQueue, &ulVarToSend, &xHigherPriorityTaskWoken);

 /* Reading from the queue will now return 100. */

 /* ... */

 if(xHigherPriorityTaskWoken == pdTRUE)
 {
 /* Writing to the queue caused a task to unblock and the unblocked task
 has a priority higher than or equal to the priority of the currently
 executing task (the task this interrupt interrupted). Perform a context
 switch so this interrupt returns directly to the unblocked task. */
 portYIELD_FROM_ISR(); /* or portEND_SWITCHING_ISR() depending on the port.*/
 }
}

Listing 129 Example use of xQueueOverwriteFromISR()

186

3.14 xQueuePeek()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueuePeek(QueueHandle_t xQueue,
 void *pvBuffer, TickType_t
 xTicksToWait);

Listing 130 xQueuePeek() function prototype

Summary

Reads an item from a queue, but without removing the item from the queue. The same item

will be returned the next time xQueueReceive() or xQueuePeek() is used to obtain an item

from the same queue.

Parameters

xQueue The handle of the queue from which data is to be read.

pvBuffer A pointer to the memory into which the data read from the queue will be

copied.

The length of the buffer must be at least equal to the queue item size. The

item size will have been set by the uxItemSize parameter of the call to

xQueueCreate() or xQueueCreateStatic() used to create the queue.

xTicksToWait The maximum amount of time the task should remain in the Blocked state to

wait for data to become available on the queue, should the queue already be

empty.

If xTicksToWait is zero, then xQueuePeek() will return immediately if the

queue is already empty.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set to 1

 187

in FreeRTOSConfig.h.

Return Values

pdPASS Returned if data was successfully read from the queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible that the calling task was placed into the Blocked state, to wait

for data to become available on the queue, but data was successfully

read from the queue before the block time expired.

errQUEUE_EMPTY Returned if data cannot be read from the queue because the queue is

already empty.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

another task or interrupt to send data to the queue, but the block time

expired before this happened.

Notes

None.

188

Example

struct AMessage
{
 char ucMessageID;
 char ucData[20];
} xMessage;

QueueHandle_t xQueue;

/* Task that creates a queue and posts a value. */
void vATask(void *pvParameters)
{
struct AMessage *pxMessage;

 /* Create a queue capable of containing 10 pointers to AMessage structures.
 Store the handle to the created queue in the xQueue variable. */
 xQueue = xQueueCreate(10, sizeof(struct AMessage *));
 if(xQueue == 0)
 {
 /* The queue was not created because there was not enough FreeRTOS heap
 memory available to allocate the queues data structures or storage area. */
 }
 else
 {
 /* ... */

 /* Send a pointer to a struct AMessage object to the queue referenced by
 the xQueue variable. Don't block if the queue is already full (the third
 parameter to xQueueSend() is zero, so not block time is specified). */
 pxMessage = &xMessage;
 xQueueSend(xQueue, (void *) &pxMessage, 0);
 }

 /* ... Rest of the task code. */
 for(;;)
 {
 }
}

/* Task to peek the data from the queue. */
void vADifferentTask(void *pvParameters)
{
struct AMessage *pxRxedMessage;

 if(xQueue != 0)
 {
 /* Peek a message on the created queue. Block for 10 ticks if a message is
 not available immediately. */
 if(xQueuePeek(xQueue, &(pxRxedMessage), 10) == pdPASS)
 {
 /* pxRxedMessage now points to the struct AMessage variable posted by
 vATask, but the item still remains on the queue. */
 }
 }
 else
 {
 /* The queue could not or has not been created. */
 }

 /* ... Rest of the task code. */
 for(;;)
 {
 }
}

Listing 131 Example use of xQueuePeek()

 189

3.15 xQueuePeekFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueuePeekFromISR(QueueHandle_t xQueue, void *pvBuffer);

Listing 132 xQueuePeekFromISR() function prototype

Summary

A version of xQueuePeek() that can be used from an interrupt service routine (ISR).

Reads an item from a queue, but without removing the item from the queue. The same item

will be returned the next time xQueueReceive() or xQueuePeek() is used to obtain an item

from the same queue.

Parameters

xQueue The handle of the queue from which data is to be read.

pvBuffer A pointer to the memory into which the data read from the queue will be copied.

The length of the buffer must be at least equal to the queue item size. The item

size will have been set by the uxItemSize parameter of the call to xQueueCreate()

or xQueueCreateStatic() used to create the queue.

Return Values

pdPASS Returned if data was successfully read from the queue.

errQUEUE_EMPTY Returned if data cannot be read from the queue because the queue is

already empty.

Notes

None.

190

3.16 xQueueReceive()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueReceive(QueueHandle_t xQueue,
 void *pvBuffer,
 TickType_t xTicksToWait);

Listing 133 xQueueReceive() function prototype

Summary

Receive (read) an item from a queue.

Parameters

xQueue The handle of the queue from which the data is being received (read). The

queue handle will have been returned from the call to xQueueCreate() or

xQueueCreateStatic() used to create the queue.

pvBuffer A pointer to the memory into which the received data will be copied.

The length of the buffer must be at least equal to the queue item size. The

item size will have been set by the uxItemSize parameter of the call to

xQueueCreate() or xQueueCreateStatic() used to create the queue.

xTicksToWait The maximum amount of time the task should remain in the Blocked state to

wait for data to become available on the queue, should the queue already be

empty.

If xTicksToWait is zero, then xQueueReceive() will return immediately if the

queue is already empty.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set to 1

 191

in FreeRTOSConfig.h.

Return Values

pdPASS Returned if data was successfully read from the queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible that the calling task was placed into the Blocked state, to wait

for data to become available on the queue, but data was successfully

read from the queue before the block time expired.

errQUEUE_EMPTY Returned if data cannot be read from the queue because the queue is

already empty.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

another task or interrupt to send data to the queue, but the block time

expired before this happened.

Notes

None.

192

Example

/* Define the data type that will be queued. */
typedef struct A_Message
{
 char ucMessageID;
 char ucData[20];
} AMessage;

/* Define the queue parameters. */
#define QUEUE_LENGTH 5
#define QUEUE_ITEM_SIZE sizeof(AMessage)

int main(void)
{
QueueHandle_t xQueue;

 /* Create the queue, storing the returned handle in the xQueue variable. */
 xQueue = xQueueCreate(QUEUE_LENGTH, QUEUE_ITEM_SIZE);
 if(xQueue == NULL)
 {
 /* The queue could not be created – do something. */
 }

 /* Create a task, passing in the queue handle as the task parameter. */
 xTaskCreate(vAnotherTask,
 “Task”,
 STACK_SIZE,
 (void *) xQueue, /* The queue handle is used as the task parameter. */
 TASK_PRIORITY,
 NULL);

 /* Start the task executing. */
 vTaskStartScheduler();

 /* Execution will only reach here if there was not enough FreeRTOS heap memory
 remaining for the idle task to be created. */
 for(;;);
}

void vAnotherTask(void *pvParameters)
{
QueueHandle_t xQueue;
AMessage xMessage;

 /* The queue handle is passed into this task as the task parameter. Cast the
 void * parameter back to a queue handle. */
 xQueue = (QueueHandle_t) pvParameters;

 for(;;)
 {
 /* Wait for the maximum period for data to become available on the queue.
 The period will be indefinite if INCLUDE_vTaskSuspend is set to 1 in
 FreeRTOSConfig.h. */
 if(xQueueReceive(xQueue, &xMessage, portMAX_DELAY) != pdPASS)
 {
 /* Nothing was received from the queue – even after blocking to wait
 for data to arrive. */
 }
 else
 {
 /* xMessage now contains the received data. */
 }
 }
}

Listing 134 Example use of xQueueReceive()

 193

3.17 xQueueReceiveFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueReceiveFromISR(QueueHandle_t xQueue,
 void *pvBuffer,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 135 xQueueReceiveFromISR() function prototype

Summary

A version of xQueueReceive() that can be called from an ISR. Unlike xQueueReceive(),

xQueueReceiveFromISR() does not permit a block time to be specified.

Parameters

xQueue The handle of the queue from which the data is being received

(read). The queue handle will have been returned from the call

to xQueueCreate() or xQueueCreateStatic() used to create the

queue.

pvBuffer A pointer to the memory into which the received data will be

copied.

The length of the buffer must be at least equal to the queue item

size. The item size will have been set by the uxItemSize

parameter of the call to xQueueCreate() or

xQueueCreateStatic() used to create the queue.

pxHigherPriorityTaskWoken It is possible that a single queue will have one or more tasks

blocked on it waiting for space to become available on the

queue. Calling xQueueReceiveFromISR() can make space

available, and so cause such a task to leave the Blocked state.

If calling the API function causes a task to leave the Blocked

state, and the unblocked task has a priority equal to or higher

than the currently executing task (the task that was interrupted),

then, internally, the API function will set

*pxHigherPriorityTaskWoken to pdTRUE.

194

If xQueueReceiveFromISR() sets this value to pdTRUE, then a

context switch should be performed before the interrupt is

exited. This will ensure that the interrupt returns directly to the

highest priority Ready state task.

From FreeRTOS V7.3.0 pxHigherPriorityTaskWoken is an

optional parameter and can be set to NULL.

Return Values

pdPASS Data was successfully received from the queue.

pdFAIL Data was not received from the queue because the queue was already empty.

Notes

Calling xQueueReceiveFromISR() within an interrupt service routine can potentially cause a

task that was blocked on a queue to leave the Blocked state. A context switch should be

performed if such an unblocked task has a priority higher than or equal to the currently

executing task (the task that was interrupted). The context switch will ensure that the interrupt

returns directly to the highest priority Ready state task. Unlike the xQueueReceive() API

function, xQueueReceiveFromISR() will not itself perform a context switch. It will instead just

indicate whether or not a context switch is required.

xQueueReceiveFromISR() must not be called prior to the scheduler being started. Therefore

an interrupt that calls xQueueReceiveFromISR() must not be allowed to execute prior to the

scheduler being started.

Example

For clarity of demonstration, the example in this section makes multiple calls to

xQueueReceiveFromISR() to receive multiple small data items. This is inefficient and

therefore not recommended for most applications. A preferable approach would be to send

the multiple data items in a structure to the queue in a single post, allowing

xQueueReceiveFromISR() to be called only once. Alternatively, and preferably, processing

can be deferred to the task level.

 195

/* vISR is an interrupt service routine that empties a queue of values, sending each
to a peripheral. It might be that there are multiple tasks blocked on the queue
waiting for space to write more data to the queue. */
void vISR(void)
{
char cByte;
BaseType_t xHigherPriorityTaskWoken;

 /* No tasks have yet been unblocked. */
 xHigherPriorityTaskWoken = pdFALSE;

 /* Loop until the queue is empty.

 xHigherPriorityTaskWoken will get set to pdTRUE internally within
 xQueueReceiveFromISR() if calling xQueueReceiveFromISR()caused a task to leave
 the Blocked state, and the unblocked task has a priority equal to or greater than
 the task currently in the Running state (the task this ISR interrupted). */
 while(xQueueReceiveFromISR(xQueue,
 &cByte,
 &xHigherPriorityTaskWoken) == pdPASS)
 {
 /* Write the received byte to the peripheral. */
 OUTPUT_BYTE(TX_REGISTER_ADDRESS, cByte);
 }

 /* Clear the interrupt source. */

 /* Now the queue is empty and we have cleared the interrupt we can perform a
 context switch if one is required (if xHigherPriorityTaskWoken has been set to
 pdTRUE. NOTE: The syntax required to perform a context switch from an ISR varies
 from port to port, and from compiler to compiler. Check the web documentation and
 examples for the port being used to find the correct syntax required for your
 application. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 136 Example use of xQueueReceiveFromISR()

196

3.18 xQueueRemoveFromSet()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueRemoveFromSet(QueueSetMemberHandle_t xQueueOrSemaphore,
 QueueSetHandle_t xQueueSet);

Listing 137 xQueueRemoveFromSet() function prototype

Summary

Summary

Remove a queue or semaphore from a queue set.

A queue or semaphore can only be removed from a queue set if the queue or semaphore is

empty.

Parameters

xQueueOrSemaphore The handle of the queue or semaphore being removed from the

queue set (cast to an QueueSetMemberHandle_t type).

xQueueSet The handle of the queue set in which the queue or semaphore is

included.

Return Values

pdPASS The queue or semaphore was successfully removed from the queue set.

pdFAIL The queue or semaphore was not removed from the queue set because either the

queue or semaphore was not in the queue set, or the queue or semaphore was not

empty.

Notes

configUSE_QUEUE_SETS must be set to 1 in FreeRTOSConfig.h for the

xQueueRemoveFromSet() API function to be available.

 197

Example

This example assumes xQueueSet is a queue set that has already been created, and xQueue

is a queue that has already been created and added to xQueueSet.

 if(xQueueRemoveFromSet(xQueue, xQueueSet) != pdPASS)
 {
 /* Either xQueue was not a member of the xQueueSet set, or xQueue is
 not empty and therefore cannot be removed from the set. */
 }
 else
 {
 /* The queue was successfully removed from the set. */
 }

Listing 138 Example use of xQueueRemoveFromSet()

198

3.19 xQueueReset()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueReset(QueueHandle_t xQueue);

Listing 139 xQueueReset() function prototype

Summary

Resets a queue to its original empty state. Any data contained in the queue at the time it is

reset is discarded.

Parameters

xQueue The handle of the queue that is being reset. The queue handle will have been

returned from the call to xQueueCreate() or xQueueCreateStatic() used to create the

queue.

Return Values

Original versions of xQueueReset() returned pdPASS or pdFAIL. Since FreeRTOS V7.2.0

xQueueReset() always returns pdPASS.

 199

3.20 xQueueSelectFromSet()

#include “FreeRTOS.h”
#include “queue.h”

QueueSetMemberHandle_t xQueueSelectFromSet(QueueSetHandle_t xQueueSet,
 const TickType_t xTicksToWait);

Listing 140 xQueueSelectFromSet() function prototype

Summary

xQueueSelectFromSet() selects from the members of a queue set a queue or semaphore that

either contains data (in the case of a queue) or is available to take (in the case of a

semaphore). xQueueSelectFromSet() effectively allows a task to block (pend) on a read

operation on all the queues and semaphores in a queue set simultaneously.

Parameters

xQueueSet The queue set on which the task will (potentially) block.

xTicksToWait The maximum time, in ticks, that the calling task will remain in the Blocked

state (with other tasks executing) to wait for a member of the queue set to be

ready for a successful queue read or semaphore take operation.

Return Values

NULL A queue or semaphore contained in the set did not become available before the

block time specified by the xTicksToWait parameter expired.

Any

other

value

The handle of a queue (cast to a QueueSetMemberHandle_t type) contained in the

queue set that contains data, or the handle of a semaphore (cast to a

QueueSetMemberHandle_t type) contained in the queue set that is available.

Notes

configUSE_QUEUE_SETS must be set to 1 in FreeRTOSConfig.h for the

xQueueSelectFromSet() API function to be available.

200

There are simpler alternatives to using queue sets. See the Blocking on Multiple Objects page

on the FreeRTOS.org website for more information.

Blocking on a queue set that contains a mutex will not cause the mutex holder to inherit the

priority of the blocked task.

A receive (in the case of a queue) or take (in the case of a semaphore) operation must not be

performed on a member of a queue set unless a call to xQueueSelectFromSet() has first

returned a handle to that set member.

Example

See the example provided for the xQueueCreateSet() function in this manual.

 201

3.21 xQueueSelectFromSetFromISR()

#include “FreeRTOS.h”
#include “queue.h”

QueueSetMemberHandle_t xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet);

Listing 141 xQueueSelectFromSetFromISR() function prototype

Summary

A version of xQueueSelectFromSet() that can be used from an interrupt service routine.

Parameters

xQueueSet The queue set being queried. It is not possible to block on a read as this function

is designed to be used from an interrupt.

Return Values

NULL No members of the queue set were available.

Any

other

value

The handle of a queue (cast to a QueueSetMemberHandle_t type) contained in the

queue set that contains data, or the handle of a semaphore (cast to a

QueueSetMemberHandle_t type) contained in the queue set that is available.

Notes

configUSE_QUEUE_SETS must be set to 1 in FreeRTOSConfig.h for the

xQueueSelectFromSetFromISR() API function to be available.

202

Example

void vReceiveFromQueueInSetFromISR(void)
{
QueueSetMemberHandle_t xActivatedQueue;
unsigned long ulReceived;

 /* See if any of the queues in the set contain data. */
 xActivatedQueue = xQueueSelectFromSetFromISR(xQueueSet);

 if(xActivatedQueue != NULL)
 {
 /* Reading from the queue returned by xQueueSelectFromSetFormISR(). */
 if(xQueueReceiveFromISR(xActivatedQueue, &ulReceived, NULL) != pdPASS)
 {
 /* Data should have been available as the handle was returned from
 xQueueSelectFromSetFromISR(). */
 }
 }
}

Listing 142 Example use of xQueueSelectFromSetFromISR()

 203

3.22 xQueueSend(), xQueueSendToFront(),
xQueueSendToBack()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueSend(QueueHandle_t xQueue,
 const void * pvItemToQueue,
 TickType_t xTicksToWait);

BaseType_t xQueueSendToFront(QueueHandle_t xQueue,
 const void * pvItemToQueue,
 TickType_t xTicksToWait);

BaseType_t xQueueSendToBack(QueueHandle_t xQueue,
 const void * pvItemToQueue,
 TickType_t xTicksToWait);

Listing 143 xQueueSend(), xQueueSendToFront() and xQueueSendToBack() function
prototypes

Summary

Sends (writes) an item to the front or the back of a queue.

xQueueSend() and xQueueSendToBack() perform the same operation so are equivalent.

Both send data to the back of a queue. xQueueSend() was the original version, and it is now

recommended to use xQueueSendToBack() in its place.

Parameters

xQueue The handle of the queue to which the data is being sent (written). The

queue handle will have been returned from the call to xQueueCreate() or

xQueueCreateStatic() used to create the queue.

pvItemToQueue A pointer to the data to be copied into the queue.

The size of each item the queue can hold is set when the queue is created,

and that many bytes will be copied from pvItemToQueue into the queue

storage area.

xTicksToWait The maximum amount of time the task should remain in the Blocked state to

wait for space to become available on the queue, should the queue already

be full.

204

xQueueSend(), xQueueSendToFront() and xQueueSendToBack() will

return immediately if xTicksToWait is zero and the queue is already full.

The block time is specified in tick periods, so the absolute time it represents

is dependent on the tick frequency. The pdMS_TO_TICKS() macro can be

used to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to

1 in FreeRTOSConfig.h.

Return Values

pdPASS Returned if data was successfully sent to the queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible that the calling task was placed into the Blocked state, to wait for

space to become available in the queue before the function returned, but

data was successfully written to the queue before the block time expired.

errQUEUE_FULL Returned if data could not be written to the queue because the queue was

already full.

If a block time was specified (xTicksToWait was not zero) then the calling

task will have been placed into the Blocked state to wait for another task or

interrupt to make room in the queue, but the specified block time expired

before that happened.

Notes

None.

 205

Example

/* Define the data type that will be queued. */
typedef struct A_Message

 char ucMessageID;
 char ucData[20];
} AMessage;

/* Define the queue parameters. */
#define QUEUE_LENGTH 5
#define QUEUE_ITEM_SIZE sizeof(AMessage)

int main(void)
{
QueueHandle_t xQueue;

 /* Create the queue, storing the returned handle in the xQueue variable. */
 xQueue = xQueueCreate(QUEUE_LENGTH, QUEUE_ITEM_SIZE);
 if(xQueue == NULL)
 {
 /* The queue could not be created – do something. */
 }

 /* Create a task, passing in the queue handle as the task parameter. */
 xTaskCreate(vAnotherTask,
 “Task”,
 STACK_SIZE,
 (void *) xQueue, /* xQueue is used as the task parameter. */
 TASK_PRIORITY,
 NULL);

 /* Start the task executing. */
 vTaskStartScheduler();

 /* Execution will only reach here if there was not enough FreeRTOS heap memory
 remaining for the idle task to be created. */
 for(;;);
}

void vATask(void *pvParameters)
{
QueueHandle_t xQueue;
AMessage xMessage;

 /* The queue handle is passed into this task as the task parameter. Cast
 the parameter back to a queue handle. */
 xQueue = (QueueHandle_t) pvParameters;

 for(;;)
 {
 /* Create a message to send on the queue. */
 xMessage.ucMessageID = SEND_EXAMPLE;

 /* Send the message to the queue, waiting for 10 ticks for space to become
 available if the queue is already full. */
 if(xQueueSendToBack(xQueue, &xMessage, 10) != pdPASS)
 {
 /* Data could not be sent to the queue even after waiting 10 ticks. */
 }
 }
}

Listing 144 Example use of xQueueSendToBack()

206

3.23 xQueueSendFromISR(),
xQueueSendToBackFromISR(),
xQueueSendToFrontFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xQueueSendFromISR(QueueHandle_t xQueue,
 const void *pvItemToQueue,
 BaseType_t *pxHigherPriorityTaskWoken);

BaseType_t xQueueSendToBackFromISR(QueueHandle_t xQueue,
 const void *pvItemToQueue,
 BaseType_t *pxHigherPriorityTaskWoken);

BaseType_t xQueueSendToFrontFromISR(QueueHandle_t xQueue,
 const void *pvItemToQueue,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 145 xQueueSendFromISR(), xQueueSendToBackFromISR() and
xQueueSendToFrontFromISR() function prototypes

Summary

Versions of the xQueueSend(), xQueueSendToFront() and xQueueSendToBack() API

functions that can be called from an ISR. Unlike xQueueSend(), xQueueSendToFront() and

xQueueSendToBack(), the ISR safe versions do not permit a block time to be specified.

xQueueSendFromISR() and xQueueSendToBackFromISR() perform the same operation so

are equivalent. Both send data to the back of a queue. xQueueSendFromISR() was the

original version and it is now recommended to use xQueueSendToBackFromISR() in its place.

Parameters

xQueue The handle of the queue to which the data is being sent

(written). The queue handle will have been returned from the

call to xQueueCreate() or xQueueCreateStatic() used to create

the queue.

pvItemToQueue A pointer to the data to be copied into the queue.

The size of each item the queue can hold is set when the queue

is created, and that many bytes will be copied from

pvItemToQueue into the queue storage area.

 207

pxHigherPriorityTaskWoken It is possible that a single queue will have one or more tasks

blocked on it waiting for data to become available. Calling

xQueueSendFromISR(), xQueueSendToFrontFromISR() or

xQueueSendToBackFromISR() can make data available, and so

cause such a task to leave the Blocked state. If calling the API

function causes a task to leave the Blocked state, and the

unblocked task has a priority equal to or higher than the

currently executing task (the task that was interrupted), then,

internally, the API function will set *pxHigherPriorityTaskWoken

to pdTRUE. If xQueueSendFromISR(),

xQueueSendToFrontFromISR() or

xQueueSendToBackFromISR() sets this value to pdTRUE, then

a context switch should be performed before the interrupt is

exited. This will ensure that the interrupt returns directly to the

highest priority Ready state task.

From FreeRTOS V7.3.0 pxHigherPriorityTaskWoken is an

optional parameter and can be set to NULL.

Return Values

pdTRUE Data was successfully sent to the queue.

errQUEUE_FULL Data could not be sent to the queue because the queue was already full.

Notes

Calling xQueueSendFromISR(), xQueueSendToBackFromISR() or

xQueueSendToFrontFromISR() within an interrupt service routine can potentially cause a task

that was blocked on a queue to leave the Blocked state. A context switch should be

performed if such an unblocked task has a priority higher than or equal to the currently

executing task (the task that was interrupted). The context switch will ensure that the interrupt

returns directly to the highest priority Ready state task. Unlike the xQueueSend(),

xQueueSendToBack() and xQueueSendToFront() API functions, xQueueSendFromISR(),

xQueueSendToBackFromISR() and xQueueSendToFrontFromISR() will not themselves

208

perform a context switch. They will instead just indicate whether or not a context switch is

required.

xQueueSendFromISR(), xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()

must not be called prior to the scheduler being started. Therefore an interrupt that calls any of

these functions must not be allowed to execute prior to the scheduler being started.

Example

For clarity of demonstration, the following example makes multiple calls to

xQueueSendToBackFromISR() to send multiple small data items. This is inefficient and

therefore not recommended. Preferable approaches include:

1. Packing the multiple data items into a structure, then using a single call to

xQueueSendToBackFromISR() to send the entire structure to the queue. This

approach is only appropriate if the number of data items is small.

2. Writing the data items into a circular RAM buffer, then using a single call to

xQueueSendToBackFromISR() to let a task know how many new data items the buffer

contains.

 209

/* vBufferISR() is an interrupt service routine that empties a buffer of values,
writing each value to a queue. It might be that there are multiple tasks blocked
on the queue waiting for the data. */
void vBufferISR(void)
{
char cIn;
BaseType_t xHigherPriorityTaskWoken;

 /* No tasks have yet been unblocked. */
 xHigherPriorityTaskWoken = pdFALSE;

 /* Loop until the buffer is empty. */
 do
 {
 /* Obtain a byte from the buffer. */
 cIn = INPUT_BYTE(RX_REGISTER_ADDRESS);

 /* Write the byte to the queue. xHigherPriorityTaskWoken will get set to
 pdTRUE if writing to the queue causes a task to leave the Blocked state,
 and the task leaving the Blocked state has a priority higher than the
 currently executing task (the task that was interrupted). */
 xQueueSendToBackFromISR(xRxQueue, &cIn, &xHigherPriorityTaskWoken);

 } while(INPUT_BYTE(BUFFER_COUNT));

 /* Clear the interrupt source here. */

 /* Now the buffer is empty, and the interrupt source has been cleared, a context
 switch should be performed if xHigherPriorityTaskWoken is equal to pdTRUE.
 NOTE: The syntax required to perform a context switch from an ISR varies from
 port to port, and from compiler to compiler. Check the web documentation and
 examples for the port being used to find the syntax required for your
 application. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 146 Example use of xQueueSendToBackFromISR()

210

3.24 uxQueueSpacesAvailable()

#include “FreeRTOS.h”
#include “queue.h”

UBaseType_t uxQueueSpacesAvailable(const QueueHandle_t xQueue);

Listing 147 uxQueueSpacesAvailable() function prototype

Summary

Returns the number of free spaces that are available in a queue. That is, the number of items

that can be posted to the queue before the queue becomes full.

Parameters

xQueue The handle of the queue being queried.

Returned Value

The number of free spaces that are available in the queue being queried at the time

uxQueueSpacesAvailable() is called.

Example

void vAFunction(QueueHandle_t xQueue)
{
UBaseType_t uxNumberOfFreeSpaces;

 /* How many free spaces are currently available in the queue referenced by the
 xQueue handle? */
 uxNumberOfFreeSpaces = uxQueueSpacesAvailable(xQueue);
}

Listing 148 Example use of uxQueueSpacesAvailable()

 211

212

Chapter 4

Semaphore API

 213

4.1 vSemaphoreCreateBinary()

#include “FreeRTOS.h”
#include “semphr.h”

void vSemaphoreCreateBinary(SemaphoreHandle_t xSemaphore);

Listing 149 vSemaphoreCreateBinary() macro prototype

Summary

NOTE: The vSemaphoreCreateBinary() macro remains in the source code to ensure backward

compatibility, but it should not be used in new designs. Use the xSemaphoreCreateBinary()

function instead.

A macro that creates a binary semaphore. A semaphore must be explicitly created before it

can be used.

Parameters

xSemaphore Variable of type SemaphoreHandle_t that will store the handle of the

semaphore being created.

Return Values

None.

If, following a call to vSemaphoreCreateBinary(), xSemaphore is equal to NULL, then the

semaphore cannot be created because there is insufficient heap memory available for

FreeRTOS to allocate the semaphore data structures. In all other cases, xSemaphore will

hold the handle of the created semaphore.

Notes

Binary semaphores and mutexes are very similar, but do have some subtle differences.

Mutexes include a priority inheritance mechanism, binary semaphores do not. This makes

binary semaphores the better choice for implementing synchronization (between tasks or

between tasks and an interrupt), and mutexes the better choice for implementing simple

mutual exclusion.

214

Binary Semaphores – A binary semaphore used for synchronization does not need to be

‘given’ back after it has been successfully ‘taken’ (obtained). Task synchronization is

implemented by having one task or interrupt ‘give’ the semaphore, and another task ‘take’ the

semaphore (see the xSemaphoreGiveFromISR() documentation).

Mutexes – The priority of a task that holds a mutex will be raised if another task of higher

priority attempts to obtain the same mutex. The task that already holds the mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

A task that obtains a mutex that is used for mutual exclusion must always give the mutex back

– otherwise no other task will ever be able to obtain the same mutex. An example of a mutex

being used to implement mutual exclusion is provided in the xSemaphoreTake() section of this

manual.

Mutexes and binary semaphores are both referenced using variables that have an

SemaphoreHandle_t type, and can be used in any API function that takes a parameter of that

type.

Mutexes and binary semaphores that were created using the old vSemaphoreCreateBinary()

macro, as opposed to the preferred xSemaphoreCreateBinary() function, are both created

such that the first call to xSemaphoreTake() on the semaphore or mutex will pass. Note

vSemaphoreCreateBinary() is deprecated and must not be used in new applications. Binary

semaphores created using the xSemaphoreCreateBinary() function are created ‘empty’, so the

semaphore must first be given before the semaphore can be taken (obtained) using a call to

xSemaphoreTake().

 215

Example

SemaphoreHandle_t xSemaphore;

void vATask(void * pvParameters)
{
 /* Attempt to create a semaphore.
 NOTE: New designs should use the xSemaphoreCreateBinary() function, not the
 vSemaphoreCreateBinary() macro. */
 vSemaphoreCreateBinary(xSemaphore);

 if(xSemaphore == NULL)
 {
 /* There was insufficient FreeRTOS heap available for the semaphore to
 be created successfully. */
 }
 else
 {
 /* The semaphore can now be used. Its handle is stored in the xSemaphore
 variable. */
 }
}

Listing 150 Example use of vSemaphoreCreateBinary()

216

4.2 xSemaphoreCreateBinary()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateBinary(void);

Listing 151 xSemaphoreCreateBinary() function prototype

Summary

Creates a binary semaphore, and returns a handle by which the semaphore can be

referenced.

Each binary semaphore requires a small amount of RAM that is used to hold the semaphore’s

state. If a binary semaphore is created using xSemaphoreCreateBinary() then the required

RAM is automatically allocated from the FreeRTOS heap. If a binary semaphore is created

using xSemaphoreCreateBinaryStatic() then the RAM is provided by the application writer,

which requires an additional parameter, but allows the RAM to be statically allocated at

compile time.

The semaphore is created in the ‘empty’ state, meaning the semaphore must first be given

before it can be taken (obtained) using the xSemaphoreTake() function.

Parameters

None.

Return Values

NULL The semaphore could not be created because there was insufficient heap

memory available for FreeRTOS to allocate the semaphore data structures.

Any other value The semaphore was created successfully. The returned value is a handle

by which the created semaphore can be referenced.

Notes

Direct to task notifications normally provide a lighter weight and faster alternative to binary

semaphores.

 217

Binary semaphores and mutexes are very similar, but do have some subtle differences.

Mutexes include a priority inheritance mechanism, binary semaphores do not. This makes

binary semaphores the better choice for implementing synchronization (between tasks or

between an interrupt and a task), and mutexes the better choice for implementing simple

mutual exclusion.

Binary Semaphores – A binary semaphore used for synchronization does not need to be

‘given’ back after it has been successfully ‘taken’ (obtained). Task synchronization is

implemented by having one task or interrupt ‘give’ the semaphore, and another task ‘take’ the

semaphore (see the xSemaphoreGiveFromISR() documentation). Note the same functionality

can often be achieved in a more efficient way using a direct to task notification.

Mutexes – The priority of a task that holds a mutex will be raised if another task of higher

priority attempts to obtain the same mutex. The task that already holds the mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

A task that obtains a mutex that is used for mutual exclusion must always give the mutex back

– otherwise no other task will ever be able to obtain the same mutex. An example of a mutex

being used to implement mutual exclusion is provided in the xSemaphoreTake() section of this

manual.

Mutexes and binary semaphores are both referenced using variables that have an

SemaphoreHandle_t type, and can be used in any API function that takes a parameter of that

type.

Mutexes and binary semaphores that were created using the vSemaphoreCreateBinary()

macro (as opposed to the preferred xSemaphoreCreateBinary() function) are both created

such that the first call to xSemaphoreTake() on the semaphore or mutex will pass. Note

vSemaphoreCreateBinary() is deprecated and must not be used in new applications. Binary

semaphores created using the xSemaphoreCreateBinary() function are created ‘empty’, so the

semaphore must first be given before the semaphore can be taken (obtained) using a call to

xSemaphoreTake().

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, or simply

left undefined, for this function to be available.

218

Example

SemaphoreHandle_t xSemaphore;

void vATask(void * pvParameters)
{
 /* Attempt to create a semaphore. */
 xSemaphore = xSemaphoreCreateBinary();

 if(xSemaphore == NULL)
 {
 /* There was insufficient FreeRTOS heap available for the semaphore to
 be created successfully. */
 }
 else
 {
 /* The semaphore can now be used. Its handle is stored in the xSemaphore
 variable. Calling xSemaphoreTake() on the semaphore here will fail until
 the semaphore has first been given. */
 }
}

Listing 152 Example use of xSemaphoreCreateBinary()

 219

4.3 xSemaphoreCreateBinaryStatic()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateBinaryStatic(StaticSemaphore_t *pxSemaphoreBuffer);

Listing 153 xSemaphoreCreateBinaryStatic() function prototype

Summary

Creates a binary semaphore, and returns a handle by which the semaphore can be

referenced.

Each binary semaphore requires a small amount of RAM that is used to hold the semaphore’s

state. If a binary semaphore is created using xSemaphoreCreateBinary() then the required

RAM is automatically allocated from the FreeRTOS heap. If a binary semaphore is created

using xSemaphoreCreateBinaryStatic() then the RAM is provided by the application writer,

which requires an additional parameter, but allows the RAM to be statically allocated at

compile time.

The semaphore is created in the ‘empty’ state, meaning the semaphore must first be given

before it can be taken (obtained) using the xSemaphoreTake() function.

Parameters

pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t, which will be used

to hold the semaphore’s state.

Return Values

NULL The semaphore could not be created because pxSemaphoreBuffer was

NULL.

Any other value The semaphore was created successfully. The returned value is a handle

by which the created semaphore can be referenced.

220

Notes

Direct to task notifications normally provide a lighter weight and faster alternative to binary

semaphores.

Binary semaphores and mutexes are very similar, but do have some subtle differences.

Mutexes include a priority inheritance mechanism, binary semaphores do not. This makes

binary semaphores the better choice for implementing synchronization (between tasks or

between an interrupt and a task), and mutexes the better choice for implementing simple

mutual exclusion.

Binary Semaphores – A binary semaphore used for synchronization does not need to be

‘given’ back after it has been successfully ‘taken’ (obtained). Task synchronization is

implemented by having one task or interrupt ‘give’ the semaphore, and another task ‘take’ the

semaphore (see the xSemaphoreGiveFromISR() documentation). Note the same functionality

can often be achieved in a more efficient way using a direct to task notification.

Mutexes – The priority of a task that holds a mutex will be raised if another task of higher

priority attempts to obtain the same mutex. The task that already holds the mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

A task that obtains a mutex that is used for mutual exclusion must always give the mutex back

– otherwise no other task will ever be able to obtain the same mutex. An example of a mutex

being used to implement mutual exclusion is provided in the xSemaphoreTake() section of this

manual.

Mutexes and binary semaphores are both referenced using variables that have an

SemaphoreHandle_t type, and can be used in any API function that takes a parameter of that

type.

Mutexes and binary semaphores that were created using the vSemaphoreCreateBinary()

macro (as opposed to the preferred xSemaphoreCreateBinary() function) are both created

such that the first call to xSemaphoreTake() on the semaphore or mutex will pass. Note

vSemaphoreCreateBinary() is deprecated and must not be used in new applications. Binary

semaphores created using the xSemaphoreCreateBinary() function are created ‘empty’, so the

 221

semaphore must first be given before the semaphore can be taken (obtained) using a call to

xSemaphoreTake().

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for this

function to be available.

Example

SemaphoreHandle_t xSemaphoreHandle;
StaticSemaphore_t xSemaphoreBuffer;

void vATask(void * pvParameters)
{
 /* Create a binary semaphore without using any dynamic memory allocation. */
 xSemaphoreHandle = xSemaphoreCreateBinaryStatic(&xSemaphoreBuffer);

 /* pxSemaphoreBuffer was not NULL so the binary semaphore will have been created,
 and xSemaphoreHandle will be a valid handle.

 The rest of the task code goes here. */
}

Listing 154 Example use of xSemaphoreCreateBinaryStatic()

222

4.4 xSemaphoreCreateCounting()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateCounting(UBaseType_t uxMaxCount,
 UBaseType_t uxInitialCount);

Listing 155 xSemaphoreCreateCounting() function prototype

Summary

Creates a counting semaphore, and returns a handle by which the semaphore can be

referenced.

Each counting semaphore requires a small amount of RAM that is used to hold the

semaphore’s state. If a counting semaphore is created using xSemaphoreCreateCounting()

then the required RAM is automatically allocated from the FreeRTOS heap. If a counting

semaphore is created using xSemaphoreCreateCountingStatic() then the RAM is provided by

the application writer, which requires an additional parameter, but allows the RAM to be

statically allocated at compile time.

Parameters

uxMaxCount The maximum count value that can be reached. When the semaphore

reaches this value it can no longer be ‘given’.

uxInitialCount The count value assigned to the semaphore when it is created.

Return Values

NULL Returned if the semaphore cannot be created because there is insufficient

heap memory available for FreeRTOS to allocate the semaphore data

structures.

Any other value The semaphore was created successfully. The returned value is a handle

by which the created semaphore can be referenced.

 223

 Notes

Direct to task notifications normally provide a lighter weight and faster alternative to counting

semaphores.

Counting semaphores are typically used for two things:

1. Counting events.

In this usage scenario, an event handler will ‘give’ the semaphore each time an event occurs,

and a handler task will ‘take’ the semaphore each time it processes an event.

The semaphore’s count value will be incremented each time it is ‘given’ and decremented

each time it is ‘taken’. The count value is therefore the difference between the number of

events that have occurred and the number of events that have been processed.

Semaphores created to count events should be created with an initial count value of zero,

because no events will have been counted prior to the semaphore being created.

2. Resource management.

In this usage scenario, the count value of the semaphore represents the number of resources

that are available.

To obtain control of a resource, a task must first successfully ‘take’ the semaphore. The action

of ‘taking’ the semaphore will decrement the semaphore’s count value. When the count value

reaches zero, no more resources are available, and further attempts to ‘take’ the semaphore

will fail.

When a task finishes with a resource, it must ‘give’ the semaphore. The action of ‘giving’ the

semaphore will increment the semaphore’s count value, indicating that a resource is available,

and allowing future attempts to ‘take’ the semaphore to be successful.

Semaphores created to manage resources should be created with an initial count value equal

to the number of resource that are available.

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, or simply

left undefined, for this function to be available.

224

Example

void vATask(void * pvParameters)
{
SemaphoreHandle_t xSemaphore;

 /* The semaphore cannot be used before it is created using a call to
 xSemaphoreCreateCounting(). The maximum value to which the semaphore can
 count in this example case is set to 10, and the initial value assigned to
 the count is set to 0. */
 xSemaphore = xSemaphoreCreateCounting(10, 0);

 if(xSemaphore != NULL)
 {
 /* The semaphore was created successfully. The semaphore can now be used. */
 }
}

Listing 156 Example use of xSemaphoreCreateCounting()

 225

4.5 xSemaphoreCreateCountingStatic()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateCountingStatic(UBaseType_t uxMaxCount,
 UBaseType_t uxInitialCount,
 StaticSemaphore_t pxSempahoreBuffer);

Listing 157 xSemaphoreCreateCountingStatic() function prototype

Summary

Creates a counting semaphore, and returns a handle by which the semaphore can be

referenced.

Each counting semaphore requires a small amount of RAM that is used to hold the

semaphore’s state. If a counting semaphore is created using xSemaphoreCreateCounting()

then the required RAM is automatically allocated from the FreeRTOS heap. If a counting

semaphore is created using xSemaphoreCreateCountingStatic() then the RAM is provided by

the application writer, which requires an additional parameter, but allows the RAM to be

statically allocated at compile time.

Parameters

uxMaxCount The maximum count value that can be reached. When the semaphore

reaches this value it can no longer be ‘given’.

uxInitialCount The count value assigned to the semaphore when it is created.

pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t, which will be used

to hold the semaphore’s state.

Return Values

NULL The semaphore could not be created because pxSemaphoreBuffer was

NULL.

Any other value The semaphore was created successfully. The returned value is a handle

by which the created semaphore can be referenced.

226

 Notes

Direct to task notifications normally provide a lighter weight and faster alternative to counting

semaphores.

Counting semaphores are typically used for two things:

1. Counting events.

In this usage scenario, an event handler will ‘give’ the semaphore each time an event occurs,

and a handler task will ‘take’ the semaphore each time it processes an event.

The semaphore’s count value will be incremented each time it is ‘given’ and decremented

each time it is ‘taken’. The count value is therefore the difference between the number of

events that have occurred and the number of events that have been processed.

Semaphores created to count events should be created with an initial count value of zero,

because no events will have been counted prior to the semaphore being created.

2. Resource management.

In this usage scenario, the count value of the semaphore represents the number of resources

that are available.

To obtain control of a resource, a task must first successfully ‘take’ the semaphore. The action

of ‘taking’ the semaphore will decrement the semaphore’s count value. When the count value

reaches zero, no more resources are available, and further attempts to ‘take’ the semaphore

will fail.

When a task finishes with a resource, it must ‘give’ the semaphore. The action of ‘giving’ the

semaphore will increment the semaphore’s count value, indicating that a resource is available,

and allowing future attempts to ‘take’ the semaphore to be successful.

Semaphores created to manage resources should be created with an initial count value equal

to the number of resource that are available.

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for this

function to be available.

 227

Example

void vATask(void * pvParameters)
{
SemaphoreHandle_t xSemaphoreHandle;
StaticSemaphore_t xSemaphoreBuffer;

 /* Create a counting semaphore without using dynamic memory allocation. The
 maximum value to which the semaphore can count in this example case is set to
 10, and the initial value assigned to the count is set to 0. */
 xSemaphoreHandle = xSemaphoreCreateCountingStatic(10, 0, &xSemaphoreBuffer);

 /* The pxSemaphoreBuffer parameter was not NULL, so the semaphore will have been
 created and is now ready for use. */
}

Listing 158 Example use of xSemaphoreCreateCountingStatic()

228

4.6 xSemaphoreCreateMutex()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateMutex(void);

Listing 159 xSemaphoreCreateMutex() function prototype

Summary

Creates a mutex type semaphore, and returns a handle by which the mutex can be

referenced.

Each mutex type semaphore requires a small amount of RAM that is used to hold the

semaphore’s state. If a mutex is created using xSemaphoreCreateMutex() then the required

RAM is automatically allocated from the FreeRTOS heap. If a mutex is created using

xSemaphoreCreateMutexStatic() then the RAM is provided by the application writer, which

requires an additional parameter, but allows the RAM to be statically allocated at compile time.

Parameters

None

Return Values

NULL Returned if the semaphore cannot be created because there is insufficient

heap memory available for FreeRTOS to allocate the semaphore data

structures.

Any other value The semaphore was created successfully. The returned value is a handle

by which the created semaphore can be referenced.

Notes

Binary semaphores and mutexes are very similar, but do have some subtle differences.

Mutexes include a priority inheritance mechanism, binary semaphores do not. This makes

binary semaphores the better choice for implementing synchronization (between tasks or

between tasks and an interrupt), and mutexes the better choice for implementing simple

mutual exclusion.

 229

Binary Semaphores – A binary semaphore used for synchronization does not need to be

‘given’ back after it has been successfully ‘taken’ (obtained). Task synchronization is

implemented by having one task or interrupt ‘give’ the semaphore, and another task ‘take’ the

semaphore (see the xSemaphoreGiveFromISR() documentation).

Mutexes – The priority of a task that holds a mutex will be raised if another task of higher

priority attempts to obtain the same mutex. The task that already holds the mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

A task that obtains a mutex that is used for mutual exclusion must always give the mutex back

– otherwise no other task will ever be able to obtain the same mutex. An example of a mutex

being used to implement mutual exclusion is provided in the xSemaphoreTake() section of this

manual.

Mutexes and binary semaphores are both referenced using variables that have an

SemaphoreHandle_t type, and can be used in any API function that takes a parameter of that

type.

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, or simply

left undefined, for this function to be available.

Example

SemaphoreHandle_t xSemaphore;

void vATask(void * pvParameters)
{
 /* Attempt to create a mutex type semaphore. */
 xSemaphore = xSemaphoreCreateMutex();

 if(xSemaphore == NULL)
 {
 /* There was insufficient heap memory available for the mutex to be
 created. */
 }
 else
 {
 /* The mutex can now be used. The handle of the created mutex will be
 stored in the xSemaphore variable. */
 }
}

Listing 160 Example use of xSemaphoreCreateMutex()

230

4.7 xSemaphoreCreateMutexStatic()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateMutexStatic(StaticSemaphore_t *pxMutexBuffer);

Listing 161 xSemaphoreCreateMutexStatic() function prototype

Summary

Creates a mutex type semaphore, and returns a handle by which the mutex can be

referenced.

Each mutex type semaphore requires a small amount of RAM that is used to hold the

semaphore’s state. If a mutex is created using xSemaphoreCreateMutex() then the required

RAM is automatically allocated from the FreeRTOS heap. If a mutex is created using

xSemaphoreCreateMutexStatic() then the RAM is provided by the application writer, which

requires an additional parameter, but allows the RAM to be statically allocated at compile time.

Parameters

pxMutexBuffer Must point to a variable of type StaticSemaphore_t, which will be used to hold

the mutex’s state.

Return Values

NULL The mutex could not be created because pxMutexBuffer was NULL.

Any other value The mutex was created successfully. The returned value is a handle by

which the created mutex can be referenced.

Notes

Binary semaphores and mutexes are very similar, but do have some subtle differences.

Mutexes include a priority inheritance mechanism, binary semaphores do not. This makes

binary semaphores the better choice for implementing synchronization (between tasks or

between tasks and an interrupt), and mutexes the better choice for implementing simple

mutual exclusion.

 231

Binary Semaphores – A binary semaphore used for synchronization does not need to be

‘given’ back after it has been successfully ‘taken’ (obtained). Task synchronization is

implemented by having one task or interrupt ‘give’ the semaphore, and another task ‘take’ the

semaphore (see the xSemaphoreGiveFromISR() documentation).

Mutexes – The priority of a task that holds a mutex will be raised if another task of higher

priority attempts to obtain the same mutex. The task that already holds the mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

A task that obtains a mutex that is used for mutual exclusion must always give the mutex back

– otherwise no other task will ever be able to obtain the same mutex. An example of a mutex

being used to implement mutual exclusion is provided in the xSemaphoreTake() section of this

manual.

Mutexes and binary semaphores are both referenced using variables that have an

SemaphoreHandle_t type, and can be used in any API function that takes a parameter of that

type.

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for this

function to be available.

Example

SemaphoreHandle_t xSemaphoreHandle;
StaticSemaphore_t xSemaphoreBuffer;

void vATask(void * pvParameters)
{
 /* Create a mutex without using any dynamic memory allocation. */
 xSemaphoreHandle = xSemaphoreCreateMutexStatic(&xSemaphoreBuffer);

 /* The pxMutexBuffer parameter was not NULL so the mutex will have been
 created and is now ready for use. */
}

Listing 162 Example use of xSemaphoreCreateMutexStatic()

232

4.8 xSemaphoreCreateRecursiveMutex()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateRecursiveMutex(void);

Listing 163 xSemaphoreCreateRecursiveMutex() function prototype

Summary

Creates a recursive mutex type semaphore, and returns a handle by which the recursive

mutex can be referenced.

Each recursive mutex requires a small amount of RAM that is used to hold the mutex’s state.

If a recursive mutex is created using xSemaphoreCreateRecursiveMutex() then the required

RAM is automatically allocated from the FreeRTOS heap. If a recursive mutex is created

using xSemaphoreCreateRecursiveMutexStatic() then the RAM is provided by the application

writer, which requires an additional parameter, but allows the RAM to be statically allocated at

compile time.

Parameters

None.

Return Values

NULL Returned if the semaphore cannot be created because there is insufficient

heap memory available for FreeRTOS to allocate the mutex data structures.

Any other value The mutex was created successfully. The returned value is a handle by

which the created mutex can be referenced.

Notes

configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for the

xSemaphoreCreateRecursiveMutex() API function to be available.

 233

A recursive mutex is ‘taken’ using the xSemaphoreTakeRecursive() function, and ‘given’ using

the xSemaphoreGiveRecursive() function. The xSemaphoreTake() and xSemaphoreGive()

functions must not be used with recursive mutexes.

Calls to xSemaphoreTakeRecursive() can be nested. Therefore, once a recursive mutex has

been successfully ‘taken’ by a task, further calls to xSemaphoreTakeRecursive() made by the

same task will also be successful. The same number of calls must be made to

xSemaphoreGiveRecursive() as have previously been made to xSemaphoreTakeRecursive()

before the mutex becomes available to any other task. For example, if a task successfully and

recursively ‘takes’ the same mutex five times, then the mutex will not be available to any other

task until the task that successfully obtained the mutex has also ‘given’ the mutex back exactly

five times.

As with standard mutexes, a recursive mutex can only be held/obtained by a single task at any

one time.

The priority of a task that holds a recursive mutex will be raised if another task of higher priority

attempts to obtain the same mutex. The task that already holds the recursive mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, or simply

left undefined, for this function to be available.

234

Example

void vATask(void * pvParameters)
{
SemaphoreHandle_t xSemaphore;

 /* Recursive semaphores cannot be used before being explicitly created using a
 call to xSemaphoreCreateRecursiveMutex(). */
 xSemaphore = xSemaphoreCreateRecursiveMutex();

 if(xSemaphore != NULL)
 {
 /* The recursive mutex semaphore was created successfully and its handle
 will be stored in xSemaphore variable. The recursive mutex can now be
 used. */
 }
}

Listing 164 Example use of xSemaphoreCreateRecursiveMutex()

 235

4.9 xSemaphoreCreateRecursiveMutexStatic()

#include “FreeRTOS.h”
#include “semphr.h”

SemaphoreHandle_t xSemaphoreCreateRecursiveMutex(StaticSemaphore_t pxMutexBuffer);

Listing 165 xSemaphoreCreateRecursiveMutexStatic() function prototype

Summary

Creates a recursive mutex type semaphore, and returns a handle by which the recursive

mutex can be referenced.

Each recursive mutex requires a small amount of RAM that is used to hold the mutex’s state.

If a recursive mutex is created using xSemaphoreCreateRecursiveMutex() then the required

RAM is automatically allocated from the FreeRTOS heap. If a recursive mutex is created

using xSemaphoreCreateRecursiveMutexStatic() then the RAM is provided by the application

writer, which requires an additional parameter, but allows the RAM to be statically allocated at

compile time.

Parameters

pxMutexBuffer Must point to a variable of type StaticSemaphore_t, which will be used to hold

the mutex’s state.

Return Values

NULL The semaphore could not be created because pxMutexBuffer was NULL.

Any other value The mutex was created successfully. The returned value is a handle by

which the created mutex can be referenced.

Notes

configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for the

xSemaphoreCreateRecursiveMutexStatic() API function to be available.

236

A recursive mutex is ‘taken’ using the xSemaphoreTakeRecursive() function, and ‘given’ using

the xSemaphoreGiveRecursive() function. The xSemaphoreTake() and xSemaphoreGive()

functions must not be used with recursive mutexes.

Calls to xSemaphoreTakeRecursive() can be nested. Therefore, once a recursive mutex has

been successfully ‘taken’ by a task, further calls to xSemaphoreTakeRecursive() made by the

same task will also be successful. The same number of calls must be made to

xSemaphoreGiveRecursive() as have previously been made to xSemaphoreTakeRecursive()

before the mutex becomes available to any other task. For example, if a task successfully and

recursively ‘takes’ the same mutex five times, then the mutex will not be available to any other

task until the task that successfully obtained the mutex has also ‘given’ the mutex back exactly

five times.

As with standard mutexes, a recursive mutex can only be held/obtained by a single task at any

one time.

The priority of a task that holds a recursive mutex will be raised if another task of higher priority

attempts to obtain the same mutex. The task that already holds the recursive mutex is said to

‘inherit’ the priority of the task that is attempting to ‘take’ the same mutex. The inherited

priority will be ‘disinherited’ when the mutex is returned (the task that inherited a higher priority

while it held a mutex will return to its original priority when the mutex is returned).

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for this

function to be available.

Example

void vATask(void * pvParameters)
{
SemaphoreHandle_t xSemaphoreHandle;
StaticSemaphore_t xSemaphoreBuffer;

 /* Create a recursive mutex without using any dynamic memory allocation. */
 xSemaphoreHandle = xSemaphoreCreateRecursiveMutexStatic(&xSemaphoreBuffer);

 /* The pxMutexBuffer parameter was not NULL so the recursive mutex will have
 been created and is now ready for use. */
}

Listing 166 Example use of xSemaphoreCreateRecursiveMutexStatic()

 237

4.10 vSemaphoreDelete()

#include “FreeRTOS.h”
#include “semphr.h”

void vSemaphoreDelete(SemaphoreHandle_t xSemaphore);

Listing 167 vSemaphoreDelete() function prototype

Summary

Deletes a semaphore that was previously created using a call to vSemaphoreCreateBinary(),

xSemaphoreCreateCounting(), xSemaphoreCreateRecursiveMutex(), or

xSemaphoreCreateMutex().

Parameters

xSemaphore The handle of the semaphore being deleted.

Return Values

None

Notes

Tasks can opt to block on a semaphore (with an optional timeout) if they attempt to obtain a

semaphore that is not available. A semaphore must not be deleted if there are any tasks

currently blocked on it.

238

4.11 uxSemaphoreGetCount()

#include “FreeRTOS.h”
#include “semphr.h”

UBaseType_t uxSemaphoreGetCount(SemaphoreHandle_t xSemaphore);

Listing 168 uxSemaphoreGetCount() function prototype

Summary

Returns the count of a semaphore.

Binary semaphores can only have a count of zero or one. Counting semaphores can have a

count between zero and the maximum count specified when the counting semaphore was

created.

Parameters

xSemaphore The handle of the semaphore being queried.

Return Values

The count of the semaphore referenced by the handle passed in the xSemaphore parameter.

 239

4.12 xSemaphoreGetMutexHolder()

#include “FreeRTOS.h”
#include “semphr.h”

TaskHandle_t xSemaphoreGetMutexHolder(SemaphoreHandle_t xMutex);

Listing 169 xSemaphoreGetMutexHolder() function prototype

Summary

Return the handle of the task that holds the mutex specified by the function parameter, if any.

Parameters

xMutex The handle of the mutex being queried.

Return Values

NULL Either:

• The semaphore specified by the xMutex parameter is not a mutex

type semaphore, or

• The semaphore is available, and not held by any task.

Any other value The handle of the task that holds the semaphore specified by the xMutex

parameter.

Notes

xSemaphoreGetMutexHolder() can be used reliably to determine if the calling task is the

mutex holder, but cannot be used reliably if the mutex is held by any task other than the calling

task. This is because the mutex holder might change between the calling task calling the

function, and the calling task testing the function’s return value.

configUSE_MUTEXES and INCLUDE_xSemaphoreGetMutexHolder must both be set to 1 in

FreeRTOSConfig.h for xSemaphoreGetMutexHolder() to be available.

240

4.13 xSemaphoreGive()

#include “FreeRTOS.h”
#include “semphr.h”

BaseType_t xSemaphoreGive(SemaphoreHandle_t xSemaphore);

Listing 170 xSemaphoreGive() function prototype

Summary

‘Gives’ (or releases) a semaphore that has previously been created using a call to

vSemaphoreCreateBinary(), xSemaphoreCreateCounting() or xSemaphoreCreateMutex() –

and has also been successfully ‘taken’.

Parameters

xSemaphore The Semaphore being ‘given’. A semaphore is referenced by a variable of type

SemaphoreHandle_t and must be explicitly created before being used.

Return Values

pdPASS The semaphore ‘give’ operation was successful.

pdFAIL The semaphore ‘give’ operation was not successful because the task calling

xSemaphoreGive() is not the semaphore holder. A task must successfully ‘take’ a

semaphore before it can successfully ‘give’ it back.

Notes

None.

 241

Example

SemaphoreHandle_t xSemaphore = NULL;

void vATask(void * pvParameters)
{
 /* A semaphore is going to be used to guard a shared resource. In this case a
 mutex type semaphore is created because it includes priority inheritance
 functionality. */
 xSemaphore = xSemaphoreCreateMutex();

 for(;;)
 {
 if(xSemaphore != NULL)
 {
 if(xSemaphoreGive(xSemaphore) != pdTRUE)
 {
 /* This call should fail because the semaphore has not yet been
 ‘taken’. */
 }

 /* Obtain the semaphore – don’t block if the semaphore is not
 immediately available (the specified block time is zero). */
 if(xSemaphoreTake(xSemaphore, 0) == pdPASS)
 {
 /* The semaphore was ‘taken’ successfully, so the resource it is
 guarding can be accessed safely. */

 /* ... */

 /* Access to the resource the semaphore is guarding is complete, so
 the semaphore must be ‘given’ back. */
 if(xSemaphoreGive(xSemaphore) != pdPASS)
 {
 /* This call should not fail because the calling task has
 already successfully ‘taken’ the semaphore. */
 }
 }
 }
 else
 {
 /* The semaphore was not created successfully because there is not
 enough FreeRTOS heap remaining for the semaphore data structures to be
 allocated. */
 }
 }
}

Listing 171 Example use of xSemaphoreGive()

242

4.14 xSemaphoreGiveFromISR()

#include “FreeRTOS.h”
#include “semphr.h”

BaseType_t xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 172 xSemaphoreGiveFromISR() function prototype

Summary

A version of xSemaphoreGive() that can be used in an ISR. Unlike xSemaphoreGive(),

xSemaphoreGiveFromISR() does not permit a block time to be specified.

Parameters

xSemaphore The semaphore being ‘given’.

A semaphore is referenced by a variable of type

SemaphoreHandle_t and must be explicitly created before

being used.

*pxHigherPriorityTaskWoken It is possible that a single semaphore will have one or more

tasks blocked on it waiting for the semaphore to become

available. Calling xSemaphoreGiveFromISR() can make the

semaphore available, and so cause such a task to leave the

Blocked state. If calling xSemaphoreGiveFromISR() causes a

task to leave the Blocked state, and the unblocked task has a

priority higher than or equal to the currently executing task (the

task that was interrupted), then, internally,

xSemaphoreGiveFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE.

If xSemaphoreGiveFromISR() sets this value to pdTRUE, then

a context switch should be performed before the interrupt is

exited. This will ensure that the interrupt returns directly to the

highest priority Ready state task.

From FreeRTOS V7.3.0 pxHigherPriorityTaskWoken is an

 243

optional parameter and can be set to NULL.

Return Values

pdTRUE The call to xSemaphoreGiveFromISR() was successful.

errQUEUE_FULL If a semaphore is already available, it cannot be given, and

xSemaphoreGiveFromISR() will return errQUEUE_FULL.

Notes

Calling xSemaphoreGiveFromISR() within an interrupt service routine can potentially cause a

task that was blocked waiting to take the semaphore to leave the Blocked state. A context

switch should be performed if such an unblocked task has a priority higher than or equal to the

currently executing task (the task that was interrupted). The context switch will ensure that the

interrupt returns directly to the highest priority Ready state task.

Unlike the xSemaphoreGive() API function, xSemaphoreGiveFromISR() will not itself perform

a context switch. It will instead just indicate whether or not a context switch is required.

xSemaphoreGiveFromISR() must not be called prior to the scheduler being started. Therefore

an interrupt that calls xSemaphoreGiveFromISR() must not be allowed to execute prior to the

scheduler being started.

244

Example

#define LONG_TIME 0xffff
#define TICKS_TO_WAIT 10
SemaphoreHandle_t xSemaphore = NULL;

/* Define a task that performs an action each time an interrupt occurs. The
Interrupt processing is deferred to this task. The task is synchronized with the
interrupt using a semaphore. */
void vATask(void * pvParameters)
{
 /* It is assumed the semaphore has already been created outside of this task. */

 for(;;)
 {
 /* Wait for the next event. */
 if(xSemaphoreTake(xSemaphore, portMAX_DELAY) == pdTRUE)
 {
 /* The event has occurred, process it here. */

 ...

 /* Processing is complete, return to wait for the next event. */
 }
 }
}

/* An ISR that defers its processing to a task by using a semaphore to indicate
when events that require processing have occurred. */
void vISR(void * pvParameters)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* The event has occurred, use the semaphore to unblock the task so the task
 can process the event. */
 xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);

 /* Clear the interrupt here. */

 /* Now the task has been unblocked a context switch should be performed if
 xHigherPriorityTaskWoken is equal to pdTRUE. NOTE: The syntax required to perform
 a context switch from an ISR varies from port to port, and from compiler to
 compiler. Check the web documentation and examples for the port being used to
 find the syntax required for your application. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 173 Example use of xSemaphoreGiveFromISR()

 245

4.15 xSemaphoreGiveRecursive()

#include “FreeRTOS.h”
#include “semphr.h”

BaseType_t xSemaphoreGiveRecursive(SemaphoreHandle_t xMutex);

Listing 174 xSemaphoreGiveRecursive() function prototype

Summary

 ‘Gives’ (or releases) a recursive mutex type semaphore that has previously been created

using xSemaphoreCreateRecursiveMutex().

Parameters

xMutex The semaphore being ‘given’. A semaphore is referenced by a variable of type

SemaphoreHandle_t and must be explicitly created before being used.

Return Values

pdPASS The call to xSemaphoreGiveRecursive() was successful.

pdFAIL The call to xSemaphoreGiveRecursive() failed because the calling task is not the

mutex holder.

Notes

A recursive mutex is ‘taken’ using the xSemaphoreTakeRecursive() function, and ‘given’ using

the xSemaphoreGiveRecursive() function. The xSemaphoreTake() and xSemaphoreGive()

functions must not be used with recursive mutexes.

Calls to xSemaphoreTakeRecursive() can be nested. Therefore, once a recursive mutex has

been successfully ‘taken’ by a task, further calls to xSemaphoreTakeRecursive() made by the

same task will also be successful. The same number of calls must be made to

xSemaphoreGiveRecursive() as have previously been made to xSemaphoreTakeRecursive()

before the mutex becomes available to any other task. For example, if a task successfully and

recursively ‘takes’ the same mutex five times, then the mutex will not be available to any other

246

task until the task that successfully obtained the mutex has also ‘given’ the mutex back exactly

five times.

xSemaphoreGiveRecursive() must only be called from an executing task and therefore must

not be called while the scheduler is in the Initialization state (prior to the scheduler being

started).

xSemaphoreGiveRecursive() must not be called from within a critical section or while the

scheduler is suspended.

 247

Example

/* A task that creates a recursive mutex. */
void vATask(void * pvParameters)
{
 /* Recursive mutexes cannot be used before being explicitly created using a call
 to xSemaphoreCreateRecursiveMutex(). */
 xMutex = xSemaphoreCreateRecursiveMutex();

 /* Rest of task code goes here. */
 for(;;)
 {
 }
}

/* A function (called by a task) that uses the mutex. */
void vAFunction(void)
{
 /* ... Do other things. */

 if(xMutex != NULL)
 {
 /* See if the mutex can be obtained. If the mutex is not available wait 10
 ticks to see if it becomes free. */
 if(xSemaphoreTakeRecursive(xMutex, 10) == pdTRUE)
 {
 /* The mutex was successfully ‘taken’. */

 ...

 /* For some reason, due to the nature of the code, further calls to
 xSemaphoreTakeRecursive() are made on the same mutex. In real code these
 would not be just sequential calls, as that would serve no purpose.
 Instead, the calls are likely to be buried inside a more complex call
 structure, for example in a TCP/IP stack.*/
 xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);
 xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);

 /* The mutex has now been ‘taken’ three times, so will not be available
 to another task until it has also been given back three times. Again it
 is unlikely that real code would have these calls sequentially, but
 instead buried in a more complex call structure. This is just for
 illustrative purposes. */
 xSemaphoreGiveRecursive(xMutex);
 xSemaphoreGiveRecursive(xMutex);
 xSemaphoreGiveRecursive(xMutex);

 /* Now the mutex can be taken by other tasks. */
 }
 else
 {
 /* The mutex was not successfully ‘taken’. */
 }
 }
}

Listing 175 Example use of xSemaphoreGiveRecursive()

248

4.16 xSemaphoreTake()

#include “FreeRTOS.h”
#include “semphr.h”

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait);

Listing 176 xSemaphoreTake() function prototype

Summary

 ‘Takes’ (or obtains) a semaphore that has previously been created using a call to

vSemaphoreCreateBinary(), xSemaphoreCreateCounting() or xSemaphoreCreateMutex().

Parameters

xSemaphore The semaphore being ‘taken’. A semaphore is referenced by a variable of

type SemaphoreHandle_t and must be explicitly created before being used.

xTicksToWait The maximum amount of time the task should remain in the Blocked state to

wait for the semaphore to become available, if the semaphore is not available

immediately.

If xTicksToWait is zero, then xSemaphoreTake() will return immediately if the

semaphore is not available.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

Return Values

pdPASS Returned only if the call to xSemaphoreTake() was successful in obtaining the

semaphore.

If a block time was specified (xTicksToWait was not zero), then it is possible that

 249

the calling task was placed into the Blocked state to wait for the semaphore if it was

not immediately available, but the semaphore became available before the block

time expired.

pdFAIL Returned if the call to xSemaphoreTake() did not successfully obtain the

semaphore.

If a block time was specified (xTicksToWait was not zero), then the calling task will

have been placed into the Blocked state to wait for the semaphore to become

available, but the block time expired before this happened.

Notes

xSemaphoreTake() must only be called from an executing task and therefore must not be

called while the scheduler is in the Initialization state (prior to the scheduler being started).

xSemaphoreTake() must not be called from within a critical section or while the scheduler is

suspended.

250

Example

SemaphoreHandle_t xSemaphore = NULL;

/* A task that creates a mutex type semaphore. */
void vATask(void * pvParameters)
{
 /* A semaphore is going to be used to guard a shared resource. In this case
 a mutex type semaphore is created because it includes priority inheritance
 functionality. */
 xSemaphore = xSemaphoreCreateMutex();

 /* The rest of the task code goes here. */
 for(;;)
 {
 /* ... */
 }
}

/* A task that uses the mutex. */
void vAnotherTask(void * pvParameters)
{
 for(;;)
 {
 /* ... Do other things. */

 if(xSemaphore != NULL)
 {
 /* See if the mutex can be obtained. If the mutex is not available
 wait 10 ticks to see if it becomes free. */
 if(xSemaphoreTake(xSemaphore, 10) == pdTRUE)
 {
 /* The mutex was successfully obtained so the shared resource can be
 accessed safely. */

 /* ... */

 /* Access to the shared resource is complete, so the mutex is
 returned. */
 xSemaphoreGive(xSemaphore);
 }
 else
 {
 /* The mutex could not be obtained even after waiting 10 ticks, so
 the shared resource cannot be accessed. */
 }
 }
 }
}

Listing 177 Example use of xSemaphoreTake()

 251

4.17 xSemaphoreTakeFromISR()

#include “FreeRTOS.h”
#include “queue.h”

BaseType_t xSemaphoreTakeFromISR(SemaphoreHandle_t xSemaphore,
 signed BaseType_t *pxHigherPriorityTaskWoken);

Listing 178 xSemaphoreTakeFromISR() function prototype

Summary

A version of xSemaphoreTake() that can be called from an ISR. Unlike xSemaphoreTake(),

xSemaphoreTakeFromISR() does not permit a block time to be specified.

Parameters

xSemaphore The semaphore being ‘taken’. A semaphore is referenced by a

variable of type SemaphoreHandle_t and must be explicitly

created before being used.

pxHigherPriorityTaskWoken It is possible (although unlikely, and dependent on the

semaphore type) that a semaphore will have one or more tasks

blocked on it waiting to give the semaphore. Calling

xSemaphoreTakeFromISR() will make a task that was blocked

waiting to give the semaphore leave the Blocked state. If calling

the API function causes a task to leave the Blocked state, and

the unblocked task has a priority equal to or higher than the

currently executing task (the task that was interrupted), then,

internally, the API function will set *pxHigherPriorityTaskWoken

to pdTRUE.

If xSemaphoreTakeFromISR() sets

*pxHigherPriorityTaskWoken to pdTRUE, then a context switch

should be performed before the interrupt is exited. This will

ensure that the interrupt returns directly to the highest priority

Ready state task. The mechanism is identical to that used in

the xQueueReceiveFromISR() function, and readers are

referred to the xQueueReceiveFromISR() documentation for

252

further explanation.

From FreeRTOS V7.3.0 pxHigherPriorityTaskWoken is an

optional parameter and can be set to NULL.

Return Values

pdPASS The semaphore was successfully taken (acquired).

pdFAIL The semaphore was not successfully taken because it was not available.

 253

4.18 xSemaphoreTakeRecursive()

#include “FreeRTOS.h”
#include “semphr.h”

BaseType_t xSemaphoreTakeRecursive(SemaphoreHandle_t xMutex,
 TickType_t xTicksToWait);

Listing 179 xSemaphoreTakeRecursive() function prototype

Summary

‘Takes’ (or obtains) a recursive mutex type semaphore that has previously been created using

xSemaphoreCreateRecursiveMutex().

Parameters

xMutex The semaphore being ‘taken’. A semaphore is referenced by a variable of

type SemaphoreHandle_t and must be explicitly created before being used.

xTicksToWait The maximum amount of time the task should remain in the Blocked state to

wait for the semaphore to become available, if the semaphore is not available

immediately.

If xTicksToWait is zero, then xSemaphoreTakeRecursive() will return

immediately if the semaphore is not available.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

Return Values

pdPASS Returned only if the call to xSemaphoreTakeRecursive() was successful in

obtaining the semaphore.

254

If a block time was specified (xTicksToWait was not zero), then it is possible that

the calling task was placed into the Blocked state to wait for the semaphore if it was

not immediately available, but the semaphore became available before the block

time expired.

pdFAIL Returned if the call to xSemaphoreTakeRecursive() did not successfully obtain the

semaphore.

If a block time was specified (xTicksToWait was not zero), then the calling task will

have been placed into the Blocked state to wait for the semaphore to become

available, but the block time expired before this happened.

Notes

A recursive mutex is ‘taken’ using the xSemaphoreTakeRecursive() function, and ‘given’ using

the xSemaphoreGiveRecursive() function. The xSemaphoreTake() and xSemaphoreGive()

functions must not be used with recursive mutexes.

Calls to xSemaphoreTakeRecursive() can be nested. Therefore, once a recursive mutex has

been successfully ‘taken’ by a task, further calls to xSemaphoreTakeRecursive() made by the

same task will also be successful. The same number of calls must be made to

xSemaphoreGiveRecursive() as have previously been made to xSemaphoreTakeRecursive()

before the mutex becomes available to any other task. For example, if a task successfully and

recursively ‘takes’ the same mutex five times, then the mutex will not be available to any other

task until the task that successfully obtained the mutex has also ‘given’ the mutex back exactly

five times.

xSemaphoreTakeRecursive() must only be called from an executing task and therefore must

not be called while the scheduler is in the Initialization state (prior to the scheduler being

started).

xSemaphoreTakeRecursive() must not be called from within a critical section or while the

scheduler is suspended.

 255

Example

/* A task that creates a recursive mutex. */
void vATask(void * pvParameters)
{
 /* Recursive mutexes cannot be used before being explicitly created using a call
 to xSemaphoreCreateRecursiveMutex(). */
 xMutex = xSemaphoreCreateRecursiveMutex();

 /* Rest of task code goes here. */
 for(;;)
 {
 }
}

/* A function (called by a task) that uses the mutex. */
void vAFunction(void)
{
 /* ... Do other things. */

 if(xMutex != NULL)
 {
 /* See if the mutex can be obtained. If the mutex is not available wait 10
 ticks to see if it becomes free. */
 if(xSemaphoreTakeRecursive(xMutex, 10) == pdTRUE)
 {
 /* The mutex was successfully ‘taken’. */

 ...

 /* For some reason, due to the nature of the code, further calls to
 xSemaphoreTakeRecursive() are made on the same mutex. In real code these
 would not be just sequential calls, as that would serve no purpose.
 Instead, the calls are likely to be buried inside a more complex call
 structure, for example in a TCP/IP stack.*/
 xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);
 xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);

 /* The mutex has now been ‘taken’ three times, so will not be available
 to another task until it has also been given back three times. Again it
 is unlikely that real code would have these calls sequentially, but
 instead buried in a more complex call structure. This is just for
 illustrative purposes. */
 xSemaphoreGiveRecursive(xMutex);
 xSemaphoreGiveRecursive(xMutex);
 xSemaphoreGiveRecursive(xMutex);

 /* Now the mutex can be taken by other tasks. */
 }
 else
 {
 /* The mutex was not successfully ‘taken’. */
 }
 }
}

Listing 180 Example use of xSemaphoreTakeRecursive()

256

 257

Chapter 5

Software Timer API

258

5.1 xTimerChangePeriod()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerChangePeriod(TimerHandle_t xTimer,
 TickType_t xNewPeriod,
 TickType_t xTicksToWait);

Listing 181 xTimerChangePeriod() function prototype

Summary

Changes the period of a timer. xTimerChangePeriodFormISR() is an equivalent function that

can be called from an interrupt service routine.

If xTimerChangePeriod() is used to change the period of a timer that is already running, then

the timer will use the new period value to recalculate its expiry time. The recalculated expiry

time will then be relative to when xTimerChangePeriod() was called, and not relative to when

the timer was originally started.

If xTimerChangePeriod() is used to change the period of a timer that is not already running,

then the timer will use the new period value to calculate an expiry time, and the timer will start

running.

Parameters

xTimer The timer to which the new period is being assigned.

xNewPeriod The new period for the timer referenced by the xTimer parameter.

Timer periods are specified in multiples of tick periods. The

pdMS_TO_TICKS() macro can be used to convert a time in milliseconds to a

time in ticks. For example, if the timer must expire after 100 ticks, then

xNewPeriod can be set directly to 100. Alternatively, if the timer must expire

after 500ms, then xNewPeriod can be set to pdMS_TO_TICKS(500),

provided configTICK_RATE_HZ is less than or equal to 1000.

xTicksToWait Timer functionality is not provided by the core FreeRTOS code, but by a timer

 259

service (or daemon) task. The FreeRTOS timer API sends commands to the

timer service task on a queue called the timer command queue. xTicksToWait

specifies the maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the timer command queue,

should the queue already be full.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. As with the xNewPeriod parameter, The

pdMS_TO_TICKS() macro can be used to convert a time specified in

milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

xTicksToWait is ignored if xTimerChangePeriod() is called before the

scheduler is started.

Return Values

pdPASS The change period command was successfully sent to the timer command queue.

If a block time was specified (xTicksToWait was not zero), then it is possible that

the calling task was placed into the Blocked state to wait for space to become

available on the timer command queue before the function returned, but data was

successfully written to the queue before the block time expired.

When the command is actually processed will depend on the priority of the timer

service task relative to other tasks in the system, although the timer’s expiry time is

relative to when xTimerChangePeriod() is actually called. The priority of the timer

service task is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The change period command was not sent to the timer command queue because

the queue was already full.

If a block time was specified (xTicksToWait was not zero) then the calling task will

have been placed into the Blocked state to wait for the timer service task to make

room in the queue, but the specified block time expired before that happened.

260

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerChangePeriod() to be

available.

Example

/* This function assumes xTimer has already been created. If the timer referenced by
xTimer is already active when it is called, then the timer is deleted. If the timer
referenced by xTimer is not active when it is called, then the period of the timer is
set to 500ms, and the timer is started. */
void vAFunction(TimerHandle_t xTimer)
{
 if(xTimerIsTimerActive(xTimer) != pdFALSE)
 {
 /* xTimer is already active - delete it. */
 xTimerDelete(xTimer);
 }
 else
 {
 /* xTimer is not active, change its period to 500ms. This will also cause
 the timer to start. Block for a maximum of 100 ticks if the change period
 command cannot immediately be sent to the timer command queue. */
 if(xTimerChangePeriod(xTimer, pdMS_TO_TICKS(500), 100) == pdPASS)
 {
 /* The command was successfully sent. */
 }
 else
 {
 /* The command could not be sent, even after waiting for 100 ticks to
 pass. Take appropriate action here. */
 }
 }
}

Listing 182 Example use of xTimerChangePeriod()

 261

5.2 xTimerChangePeriodFromISR()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerChangePeriodFromISR(TimerHandle_t xTimer,
 TickType_t xNewPeriod,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 183 xTimerChangePeriodFromISR() function prototype

Summary

A version of xTimerChangePeriod() that can be called from an interrupt service routine.

Parameters

xTimer The timer to which the new period is being assigned.

xNewPeriod The new period for the timer referenced by the xTimer

parameter.

Timer periods are specified in multiples of tick periods. The

pdMS_TO_TICKS() macro can be used to convert a time in

milliseconds to a time in ticks. For example, if the timer must

expire after 100 ticks, then xNewPeriod can be set directly to

100. Alternatively, if the timer must expire after 500ms, then

xNewPeriod can be set to pdMS_TO_TICKS(500), provided

configTICK_RATE_HZ is less than or equal to 1000.

pxHigherPriorityTaskWoken xTimerChangePeriodFromISR() writes a command to the timer

command queue. If writing to the timer command queue causes

the timer service task to leave the Blocked state, and the timer

service task has a priority equal to or greater than the currently

executing task (the task that was interrupted), then

*pxHigherPriorityTaskWoken will be set to pdTRUE internally

within the xTimerChangePeriodFromISR() function. If

xTimerChangePeriodFromISR() sets this value to pdTRUE, then

a context switch should be performed before the interrupt exits.

262

Return Values

pdPASS The change period command was successfully sent to the timer command queue.

When the command is actually processed will depend on the priority of the timer

service task relative to other tasks in the system, although the timer’s expiry time is

relative to when xTimerChangePeriodFromISR() is actually called. The priority of

the timer service task is set by the configTIMER_TASK_PRIORITY configuration

constant.

pdFAIL The change period command was not sent to the timer command queue because

the queue was already full.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for

xTimerChangePeriodFromISR() to be available.

Example

/* This scenario assumes xTimer has already been created and started. When an
interrupt occurs, the period of xTimer should be changed to 500ms. */

/* The interrupt service routine that changes the period of xTimer. */
void vAnExampleInterruptServiceRoutine(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* The interrupt has occurred - change the period of xTimer to 500ms.
 xHigherPriorityTaskWoken was set to pdFALSE where it was defined (within this
 function). As this is an interrupt service routine, only FreeRTOS API functions
 that end in "FromISR" can be used. */
 if(xTimerChangePeriodFromISR(xTimer, &xHigherPriorityTaskWoken) != pdPASS)
 {
 /* The command to change the timer’s period was not executed successfully.
 Take appropriate action here. */
 }

 /* If xHigherPriorityTaskWoken equals pdTRUE, then a context switch should be
 performed. The syntax required to perform a context switch from inside an ISR
 varies from port to port, and from compiler to compiler. Inspect the demos for
 the port you are using to find the actual syntax required. */
 if(xHigherPriorityTaskWoken != pdFALSE)
 {
 /* Call the interrupt safe yield function here (actual function depends on
 the FreeRTOS port being used). */
 }
}

Listing 184 Example use of xTimerChangePeriodFromISR()

 263

5.3 xTimerCreate()

#include “FreeRTOS.h”
#include “timers.h”

TimerHandle_t xTimerCreate(const char *pcTimerName,
 const TickType_t xTimerPeriod,
 const UBaseType_t uxAutoReload,
 void * const pvTimerID,
 TimerCallbackFunction_t pxCallbackFunction);

Listing 185 xTimerCreate() function prototype

Summary

Creates a new software timer and returns a handle by which the created software timer can be

referenced.

Each software timer requires a small amount of RAM that is used to hold the timer’s state. If a

software timer is created using xTimerCreate() then this RAM is automatically allocated from

the FreeRTOS heap. If a software timer is created using xTimerCreateStatic() then the RAM

is provided by the application writer, which requires an additional parameter, but allows the

RAM to be statically allocated at compile time.

Creating a timer does not start the timer running. The xTimerStart(), xTimerReset(),

xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and

xTimerChangePeriodFromISR() API functions can all be used to start the timer running.

Parameters

pcTimerName A plain text name that is assigned to the timer, purely to assist

debugging.

xTimerPeriod The timer period. Cannot be 0.

Timer periods are specified in multiples of tick periods. The

pdMS_TO_TICKS() macro can be used to convert a time in milliseconds

to a time in ticks. For example, if the timer must expire after 100 ticks,

then xNewPeriod can be set directly to 100. Alternatively, if the timer

must expire after 500ms, then xNewPeriod can be set to

pdMS_TO_TICKS(500), provided configTICK_RATE_HZ is less than or

264

equal to 1000.

uxAutoReload Set to pdTRUE to create an autoreload timer. Set to pdFALSE to create

a one-shot timer.

Once started, an autoreload timer will expire repeatedly with a frequency

set by the xTimerPeriod parameter.

Once started, a one-shot timer will expire only once. A one-shot timer

can be manually restarted after it has expired.

pvTimerID An identifier that is assigned to the timer being created. The identifier

can later be updated using the vTimerSetTimerID() API function.

If the same callback function is assigned to multiple timers, then the

timer identifier can be inspected inside the callback function to determine

which timer actually expired. In addition, the timer identifier can be used

to store a value in between calls to the timer’s callback function.

pxCallbackFunction The function to call when the timer expires. Callback functions must

have the prototype defined by the TimerCallbackFunction_t typedef.

The required prototype is shown in Listing 186.

void vCallbackFunctionExample(TimerHandle_t xTimer);

Listing 186 The timer callback function prototype

Return Values

NULL The software timer could not be created because there was insufficient

FreeRTOS heap memory available to successfully allocate the timer data

structures.

Any other

value

The software timer was created successfully and the returned value is the

handle by which the created software timer can be referenced.

 265

Notes

configUSE_TIMERS and configSUPPORT_DYNAMIC_ALLOCATION must both be set to 1 in

FreeRTOSConfig.h for xTimerCreate() to be available.

configSUPPORT_DYNAMIC_ALLOCATION will default to 1 if it is left undefined.

Example

/* Define a callback function that will be used by multiple timer instances. The callback
function does nothing but count the number of times the associated timer expires, and stop the
timer once the timer has expired 10 times. The count is saved as the ID of the timer. */
void vTimerCallback(TimerHandle_t xTimer)
{
const uint32_t ulMaxExpiryCountBeforeStopping = 10;
uint32_t ulCount;

 /* The number of times this timer has expired is saved as the timer's ID. Obtain the
 count. */
 ulCount = (uint32_t) pvTimerGetTimerID(xTimer);

 /* Increment the count, then test to see if the timer has expired
 ulMaxExpiryCountBeforeStopping yet. */
 ulCount++;

 /* If the timer has expired 10 times then stop it from running. */
 if(ulCount >= xMaxExpiryCountBeforeStopping)
 {
 /* Do not use a block time if calling a timer API function from a timer callback
 function, as doing so could cause a deadlock! */
 xTimerStop(pxTimer, 0);
 }
 else
 {
 /* Store the incremented count back into the timer's ID field so it can be read back again
 the next time this software timer expires. */
 vTimerSetTimerID(xTimer, (void *) ulCount);
 }
}

Listing 187 Definition of the callback function used in the calls to xTimerCreate() in
Listing 188

	

266

#define NUM_TIMERS 5

/* An array to hold handles to the created timers. */
TimerHandle_t xTimers[NUM_TIMERS];

void main(void)
{
long x;

 /* Create then start some timers. Starting the timers before the RTOS scheduler has been
 started means the timers will start running immediately that the RTOS scheduler starts. */
 for(x = 0; x < NUM_TIMERS; x++)
 {
 xTimers[x] = xTimerCreate(/* Just a text name, not used by the RTOS kernel. */
 "Timer",
 /* The timer period in ticks, must be greater than 0. */
 (100 * x) + 100,
 /* The timers will auto-reload themselves when they
 expire. */
 pdTRUE,
 /* The ID is used to store a count of the number of
 times the timer has expired, which is initialized to 0. */
 (void *) 0,
 /* Each timer calls the same callback when it expires. */
 vTimerCallback);

 if(xTimers[x] == NULL)
 {
 /* The timer was not created. */
 }
 else
 {
 /* Start the timer. No block time is specified, and even if one was it would be
 ignored because the RTOS scheduler has not yet been started. */
 if(xTimerStart(xTimers[x], 0) != pdPASS)
 {
 /* The timer could not be set into the Active state. */
 }
 }
 }

 /* ...
 Create tasks here.
 ... */

 /* Starting the RTOS scheduler will start the timers running as they have already been set
 into the active state. */
 vTaskStartScheduler();

 /* Should not reach here. */
 for(;;);
}

Listing 188 Example use of xTimerCreate()

 267

5.4 xTimerCreateStatic()

#include “FreeRTOS.h”
#include “timers.h”

TimerHandle_t xTimerCreateStatic(const char *pcTimerName,
 const TickType_t xTimerPeriod,
 const UBaseType_t uxAutoReload,
 void * const pvTimerID,
 TimerCallbackFunction_t pxCallbackFunction,
 StaticTimer_t *pxTimerBuffer);

Listing 189 xTimerCreateStatic() function prototype

Summary

Creates a new software timer and returns a handle by which the created software timer can be

referenced.

Each software timer requires a small amount of RAM that is used to hold the timer’s state. If a

software timer is created using xTimerCreate() then this RAM is automatically allocated from

the FreeRTOS heap. If a software timer is created using xTimerCreateStatic() then the RAM

is provided by the application writer, which requires an additional parameter, but allows the

RAM to be statically allocated at compile time.

Creating a timer does not start the timer running. The xTimerStart(), xTimerReset(),

xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and

xTimerChangePeriodFromISR() API functions can all be used to start the timer running.

Parameters

pcTimerName A plain text name that is assigned to the timer, purely to assist

debugging.

xTimerPeriod The timer period. Cannot be 0.

Timer periods are specified in multiples of tick periods. The

pdMS_TO_TICKS() macro can be used to convert a time in milliseconds

to a time in ticks. For example, if the timer must expire after 100 ticks,

then xNewPeriod can be set directly to 100. Alternatively, if the timer

must expire after 500ms, then xNewPeriod can be set to

268

pdMS_TO_TICKS(500), provided configTICK_RATE_HZ is less than or

equal to 1000.

uxAutoReload Set to pdTRUE to create an autoreload timer. Set to pdFALSE to create

a one-shot timer.

Once started, an autoreload timer will expire repeatedly with a frequency

set by the xTimerPeriod parameter.

Once started, a one-shot timer will expire only once. A one-shot timer

can be manually restarted after it has expired.

pvTimerID An identifier that is assigned to the timer being created. The identifier

can later be updated using the vTimerSetTimerID() API function.

If the same callback function is assigned to multiple timers, then the

timer identifier can be inspected inside the callback function to determine

which timer actually expired. In addition, the timer identifier can be used

to store a value in between calls to the timer’s callback function.

pxCallbackFunction The function to call when the timer expires. Callback functions must

have the prototype defined by the TimerCallbackFunction_t typedef.

The required prototype is shown in Listing 186.

void vCallbackFunctionExample(TimerHandle_t xTimer);

Listing 190 The timer callback function prototype

pxTimerBuffer Must point to a variable of type StaticTimer_t, which is then used to hold

the timer's state.

Return Values

NULL The software timer could not be created because pxTimerBuffer was NULL.

Any other

value

The software timer was created successfully and the returned value is the

handle by which the created software timer can be referenced.

 269

Notes

configUSE_TIMERS and configSUPPORT_STATIC_ALLOCATION must both be set to 1 in

FreeRTOSConfig.h for xTimerCreateStatic() to be available.

Example

/* Define a callback function that will be used by multiple timer instances. The callback
function does nothing but count the number of times the associated timer expires, and stop the
timer once the timer has expired 10 times. The count is saved as the ID of the timer. */
void vTimerCallback(TimerHandle_t xTimer)
{
const uint32_t ulMaxExpiryCountBeforeStopping = 10;
uint32_t ulCount;

 /* The number of times this timer has expired is saved as the timer's ID. Obtain the
 count. */
 ulCount = (uint32_t) pvTimerGetTimerID(xTimer);

 /* Increment the count, then test to see if the timer has expired
 ulMaxExpiryCountBeforeStopping yet. */
 ulCount++;

 /* If the timer has expired 10 times then stop it from running. */
 if(ulCount >= xMaxExpiryCountBeforeStopping)
 {
 /* Do not use a block time if calling a timer API function from a timer callback
 function, as doing so could cause a deadlock! */
 xTimerStop(pxTimer, 0);
 }
 else
 {
 /* Store the incremented count back into the timer's ID field so it can be read back again
 the next time this software timer expires. */
 vTimerSetTimerID(xTimer, (void *) ulCount);
 }
}

Listing 191 Definition of the callback function used in the calls to xTimerCreate() in
Listing 188

	

270

#define NUM_TIMERS 5

/* An array to hold handles to the created timers. */
TimerHandle_t xTimers[NUM_TIMERS];

/* An array of StaticTimer_t structures, which are used to store the state of each created
timer. */
StaticTimer_t xTimerBuffers[NUM_TIMERS];

void main(void)
{
long x;

 /* Create then start some timers. Starting the timers before the RTOS scheduler has been
 started means the timers will start running immediately that the RTOS scheduler starts. */
 for(x = 0; x < NUM_TIMERS; x++)
 {
 xTimers[x] = xTimerCreateStatic(/* Just a text name, not used by the RTOS kernel. */
 "Timer",
 /* The timer period in ticks, must be greater than
 0. */
 (100 * x) + 100,
 /* The timers will auto-reload themselves when they
 expire. */
 pdTRUE,
 /* The ID is used to store a count of the number of
 times the timer has expired, which is initialized
 to 0. */
 (void *) 0,
 /* Each timer calls the same callback when it
 expires. */
 vTimerCallback,
 /* Pass in the address of a StaticTimer_t variable,
 which will hold the data associated with the timer
 being created. */
 &(xTimerBuffers[x]););

 if(xTimers[x] == NULL)
 {
 /* The timer was not created. */
 }
 else
 {
 /* Start the timer. No block time is specified, and even if one was it would be
 ignored because the RTOS scheduler has not yet been started. */
 if(xTimerStart(xTimers[x], 0) != pdPASS)
 {
 /* The timer could not be set into the Active state. */
 }
 }
 }

 /* ...
 Create tasks here.
 ... */

 /* Starting the RTOS scheduler will start the timers running as they have already been set
 into the active state. */
 vTaskStartScheduler();

 /* Should not reach here. */
 for(;;);
}

Listing 192 Example use of xTimerCreateStatic()

 271

5.5 xTimerDelete()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerDelete(TimerHandle_t xTimer, TickType_t xTicksToWait);

Listing 193 xTimerDelete() macro prototype

Summary

Deletes a timer. The timer must first have been created using the xTimerCreate() API

function.

Parameters

xTimer The handle of the timer being deleted.

xTicksToWait Timer functionality is not provided by the core FreeRTOS code, but by a timer

service (or daemon) task. The FreeRTOS timer API sends commands to the

timer service task on a queue called the timer command queue. xTicksToWait

specifies the maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the timer command queue,

should the queue already be full.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

xTicksToWait is ignored if xTimerDelete() is called before the scheduler is

started

Return Values

pdPASS The delete command was successfully sent to the timer command queue.

272

If a block time was specified (xTicksToWait was not zero), then it is possible that

the calling task was placed into the Blocked state to wait for space to become

available on the timer command queue before the function returned, but data was

successfully written to the queue before the block time expired.

When the command is actually processed will depend on the priority of the timer

service task relative to other tasks in the system. The priority of the timer service

task is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The delete command was not sent to the timer command queue because the queue

was already full.

If a block time was specified (xTicksToWait was not zero) then the calling task will

have been placed into the Blocked state to wait for the timer service task to make

room in the queue, but the specified block time expired before that happened.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerDelete() to be available.

Example

See the example provided for the xTimerChangePeriod() API function.

 273

5.6 xTimerGetExpiryTime()

#include “FreeRTOS.h”
#include “timers.h”

TickType_t xTimerGetExpiryTime(TimerHandle_t xTimer);

Listing 194 xTimerGetExpiryTime() function prototype

Summary

Returns the time at which a software timer will expire, which is the time the software timer's

callback function will execute.

Parameters

xTimer The handle of the timer being queried.

Return Values

If the timer referenced by xTimer is active, then the time at which the timer’s callback function

will next execute is returned. The time is specified in RTOS ticks.

The return value is undefined if the timer referenced by xTimer is not active. The

xTimerIsTimerActive() API function can be used to determine if a timer is active.

Notes

If the value returned by xTimerGetExpiryTime() is less than the current tick count then the

timer will not expire until after the tick count has overflowed and wrapped back to 0. Overflows

are handled in the RTOS implementation itself, so a timer’s callback function will execute at

the correct time whether it is before or after the tick count overflows.

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerGetExpiryTime() to be

available.

274

Example

static void vAFunction(TimerHandle_t xTimer)
{
TickType_t xRemainingTime;

 /* Calculate the time that remains before the timer referenced by xTimer
 Expires and executes its callback function.

 TickType_t is an unsigned type, so the subtraction will result in the correct
 answer even if the timer will not expire until after the tick count has
 overflowed. */
 xRemainingTime = xTimerGetExpiryTime(xTimer) - xTaskGetTickCount();
}

Listing 195 Example use of xTimerGetExpiryTime()

 275

5.7 pcTimerGetName()

#include “FreeRTOS.h”
#include “timers.h”

const char * pcTimerGetName(TimerHandle_t xTimer);

Listing 196 pcTimerGetName() function prototype

Summary

Returns the human readable text name assigned to the timer when the timer was created.

See the xTimerCreate() API function for more information.

Parameters

xTimer The timer being queried.

Return Values

Timer names are standard NULL terminated C strings. The value returned is a pointer to the
subject timer’s name.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for pcTimerGetName() to be

available.

276

5.8 xTimerGetPeriod()

#include “FreeRTOS.h”
#include “timers.h”

TickType_t xTimerGetPeriod(TimerHandle_t xTimer);

Listing 197 xTimerGetPeriod() function prototype

Summary

Returns the period of a software timer. The period is specified in RTOS ticks.

The period of a software timer is initially specified by the xTimerPeriod parameter of the call to

xTimerCreate() used to create the timer. It can subsequently be changed using the

xTimerChangePeriod() and xTimerChangePeriodFromISR() API functions.

Parameters

xTimer The handle of the timer being queried.

Return Values

The period of the timer, specified in ticks.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerGetPeriod() to be

available.

Example

/* A callback function assigned to a software timer. */
static void prvTimerCallback(TimerHandle_t xTimer)
{
TickType_t xTimerPeriod;

 /* Query the period of the timer that expired. */
 xTimerPeriod = xTimerGetPeriod(xTimer);
}

Listing 198 Example use of xTimerGetPeriod()

 277

5.9 uxTimerGetReloadMode()

#include “FreeRTOS.h”
#include “timers.h”

TickType_t uxTimerGetReloadMode(TimerHandle_t xTimer);

Listing 199 uxTimerGetReloadMode() function prototype

Summary

Queries a timer to determine if it is an auto-reload timer, in which case the timer automatically

resets itself each time it expires, or a one-shot timer, in which case the timer will only expire

once unless it is manually restarted.

Parameters

xTimer The handle of the timer being queried.

Return Values

If the timer is an auto-reload timer then pdTRUE is returned, otherwise pdFALSE is returned.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for uxTimerGetReloadMode() to

be available.

Example

static UBaseType prvGetTimerReloadExample(TimerHandle_t xTimer)
{
UBaseType_t uxReturn;

 /* Query the period of the timer that expired. */
 uxReturn = uxTimerGetReloadMode(xTimer);
 return uxReturn;
}

Listing 200 Example use of uxTimerGetReloadMode()

278

5.10 xTimerGetTimerDaemonTaskHandle()

#include “FreeRTOS.h”
#include “timers.h”

TaskHandle_t xTimerGetTimerDaemonTaskHandle(void);

Listing 201 xTimerGetTimerDaemonTaskHandle() function prototype

Summary

Returns the task handle associated with the software timer daemon (or service) task. If

configUSE_TIMERS is set to 1 in FreeRTOSConfig.h, then the timer daemon task is created

automatically when the scheduler is started. All FreeRTOS software timer callback functions

run in the context of the timer daemon task.

Parameters

None.

Return Values

The handle of the timer daemon task. FreeRTOS software timer callback functions run in the

context of the software daemon task.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for

xTimerGetTimerDaemonTaskHandle() to be available.

 279

5.11 pvTimerGetTimerID()

#include “FreeRTOS.h”
#include “timers.h”

void *pvTimerGetTimerID(TimerHandle_t xTimer);

Listing 202 pvTimerGetTimerID() function prototype

Summary

Returns the identifier (ID) assigned to the timer. An identifier is assigned to the timer when the

timer is created, and can be updated using the vTimerSetTimerID() API function. See the

xTimerCreate() API function for more information.

If the same callback function is assigned to multiple timers, the timer identifier can be

inspected inside the callback function to determine which timer actually expired. This is

demonstrated in the example code provided for the xTimerCreate() API function.

In addition the timer’s identifier can be used to store values in between calls to the timer’s

callback function.

Parameters

xTimer The timer being queried.

Return Values

The identifier assigned to the timer being queried.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for pvTimerGetTimerID() to be

available.

280

Example

/* A callback function assigned to a timer. */
void TimerCallbackFunction(TimerHandle_t pxExpiredTimer)
{
uint32_t ulCallCount;

 /* A count of the number of times this timer has expired and executed its
 callback function is stored in the timer's ID. Retrieve the count, increment it,
 then save it back into the timer's ID. */
 ulCallCount = (uint32_t) pvTimerGetTimerID(pxExpiredTimer);
 ulCallCount++;
 vTimerSetTimerID(pxExpiredTimer, (void *) ulCallCount);
}

Listing 203 Example use of pvTimerGetTimerID()

 281

5.12 xTimerIsTimerActive()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerIsTimerActive(TimerHandle_t xTimer);

Listing 204 xTimerIsTimerActive() function prototype

Summary

Queries a timer to determine if the timer is running.

A timer will not be running if:

1. The timer has been created, but not started.

2. The timer is a one shot timer that has not been restarted since it expired.

The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),

xTimerChangePeriod() and xTimerChangePeriodFromISR() API functions can all be used to

start a timer running.

Parameters

xTimer The timer being queried.

Return Values

pdFALSE The timer is not running.

Any other value The timer is running.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerIsTimerActive() to be

available.

282

Example

/* This function assumes xTimer has already been created. */
void vAFunction(TimerHandle_t xTimer)
{
 /* The following line could equivalently be written as:
 "if(xTimerIsTimerActive(xTimer))" */
 if(xTimerIsTimerActive(xTimer) != pdFALSE)
 {
 /* xTimer is active, do something. */
 }
 else
 {
 /* xTimer is not active, do something else. */
 }
}

Listing 205 Example use of xTimerIsTimerActive()

 283

5.13 xTimerPendFunctionCall()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerPendFunctionCall(PendedFunction_t xFunctionToPend,
 void *pvParameter1,
 uint32_t ulParameter2,
 TickType_t xTicksToWait);

Listing 206 xTimerPendFunctionCall() function prototype

Summary

Used to defer the execution of a function to the RTOS daemon task (also known as the timer

service task, hence this function is implemented in timers.c and is prefixed with 'Timer').

This function must not be called from an interrupt service routine. See

xTimerPendFunctionCallFromISR() for a version that can be called from an interrupt service

routine.

Functions that can be deferred to the RTOS daemon task must have the prototype

demonstrated by Listing 207.

void vPendableFunction(void *pvParameter1, uint32_t ulParameter2);

Listing 207 The prototype of a function that can be pended using a call to
xTimerPendFunctionCall()

The pvParameter1 and ulParameter2 parameters are provided for use by the application code.

Parameters

xFunctionToPend The function to execute from the timer service/daemon task. The function

must conform to the PendedFunction_t prototype shown in Listing 207.

pvParameter1 The value to pass into the callback function as the function's first

parameter. The parameter has a void * type to allow it to be used to pass

any type. For example, integer types can be cast to a void *, or the void *

can be used to point to a structure.

284

ulParameter2 The value to pass into the callback function as the function’s second

parameter.

xTicksToWait Calling xTimerPendFunctionCall() will result in a message being sent on a

queue to the timer daemon task (also known as the timer service task).

xTicksToWait specifies the amount of time the calling task should wait in

the Blocked state (so not consuming any processing time) for space to

come available on the queue if the queue is full.

Return Values

pdPASS The message was successfully sent to the RTOS daemon task.

Any other

value

The message was not sent to the RTOS daemon task because the message

queue was already full. The length of the queue is set by the value of

configTIMER_QUEUE_LENGTH in FreeRTOSConfig.h.

Notes

INCLUDE_xTimerPendFunctionCall() and configUSE_TIMERS must both be set to 1 in

FreeRTOSConfig.h for xTimerPendFunctionCall() to be available.

 285

5.14 xTimerPendFunctionCallFromISR()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerPendFunctionCallFromISR(PendedFunction_t xFunctionToPend,
 void *pvParameter1,
 uint32_t ulParameter2,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 208 xTimerPendFunctionCallFromISR() function prototype

Summary

Used from application interrupt service routines to defer the execution of a function to the

RTOS daemon task (also known as the timer service task, hence this function is implemented

in timers.c and is prefixed with 'Timer').

Ideally an interrupt service routine (ISR) is kept as short as possible, but sometimes an ISR

either has a lot of processing to do, or needs to perform processing that is not deterministic. In

these cases xTimerPendFunctionCallFromISR() can be used to defer processing of a function

to the RTOS daemon task.

A mechanism is provided that allows the interrupt to return directly to the task that will

subsequently execute the pended function. This allows the callback function to execute

contiguously in time with the interrupt - just as if the callback had executed in the interrupt

itself.

Functions that can be deferred to the RTOS daemon task must have the prototype

demonstrated by Listing 209.

void vPendableFunction(void *pvParameter1, uint32_t ulParameter2);

Listing 209 The prototype of a function that can be pended using a call to
xTimerPendFunctionCallFromISR()

The pvParameter1 and ulParameter2 parameters are provided for use by the application code.

286

Parameters

xFunctionToPend The function to execute from the timer service/daemon task.

The function must conform to the PendedFunction_t prototype

shown in Listing 209 .

pvParameter1 The value that will be passed into the callback function as the

function’s first parameter. The parameter has a void * type to

allow it to be used to pass any type. For example, integer types

can be cast to a void *, or the void * can be used to point to a

structure.

ulParameter2 The value that will be passed into the callback function as the

function’s second parameter.

pxHigherPriorityTaskWoken Calling xTimerPendFunctionCallFromISR() will result in a

message being sent on a queue to the RTOS timer daemon

task. If the priority of the daemon task (which is set by the value

of configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is

higher than the priority of the currently running task (the task the

interrupt interrupted) then *pxHigherPriorityTaskWoken will be

set to pdTRUE within xTimerPendFunctionCallFromISR(),

indicating that a context switch should be requested before the

interrupt exits. For that reason *pxHigherPriorityTaskWoken

must be initialized to pdFALSE.

Return Values

pdPASS The message was successfully sent to the RTOS daemon task.

Any other

value

The message was not sent to the RTOS daemon task because the message

queue was already full. The length of the queue is set by the value of

configTIMER_QUEUE_LENGTH in FreeRTOSConfig.h.

Notes

INCLUDE_xTimerPendFunctionCall() and configUSE_TIMERS must both be set to 1 in

FreeRTOSConfig.h for xTimerPendFunctionCallFromISR() to be available.

 287

Example

/* The callback function that will execute in the context of the daemon task.
Note callback functions must all use this same prototype. */
void vProcessInterface(void *pvParameter1, uint32_t ulParameter2)
{
BaseType_t xInterfaceToService;

 /* The interface that requires servicing is passed in the second parameter.
 The first parameter is not used in this case. */
 xInterfaceToService = (BaseType_t) ulParameter2;

 /* ...Perform the processing here... */
}

/* An ISR that receives data packets from multiple interfaces */
void vAnISR(void)
{
BaseType_t xInterfaceToService, xHigherPriorityTaskWoken;

 /* Query the hardware to determine which interface needs processing. */
 xInterfaceToService = prvCheckInterfaces();

 /* The actual processing is to be deferred to a task. Request the
 vProcessInterface() callback function is executed, passing in the number of
 the interface that needs processing. The interface to service is passed in
 the second parameter. The first parameter is not used in this case. */
 xHigherPriorityTaskWoken = pdFALSE;
 xTimerPendFunctionCallFromISR(vProcessInterface,
 NULL,
 (uint32_t) xInterfaceToService,
 &xHigherPriorityTaskWoken);

 /* If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch
 should be requested. The macro used is port specific and will be either
 portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to the documentation
 page for the port being used. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 210 Example use of xTimerPendFunctionCallFromISR()

288

5.15 xTimerReset()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerReset(TimerHandle_t xTimer, TickType_t xTicksToWait);

Listing 211 xTimerReset() function prototype

Summary

Re-starts a timer. xTimerResetFromISR() is an equivalent function that can be called from an

interrupt service routine.

If the timer is already running, then the timer will recalculate its expiry time to be relative to

when xTimerReset() was called.

If the timer was not running, then the timer will calculate an expiry time relative to when

xTimerReset() was called, and the timer will start running. In this case, xTimerReset() is

functionally equivalent to xTimerStart().

Resetting a timer ensures the timer is running. If the timer is not stopped, deleted, or reset in

the meantime, the callback function associated with the timer will get called ‘n’ ticks after

xTimerReset() was called, where ‘n’ is the timer’s defined period.

If xTimerReset() is called before the scheduler is started, then the timer will not start running

until the scheduler has been started, and the timer’s expiry time will be relative to when the

scheduler started.

Parameters

xTimer The timer being reset, started, or restarted.

xTicksToWait Timer functionality is not provided by the core FreeRTOS code, but by a timer

service (or daemon) task. The FreeRTOS timer API sends commands to the

timer service task on a queue called the timer command queue. xTicksToWait

specifies the maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the timer command queue,

should the queue already be full.

 289

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

xTicksToWait is ignored if xTimerReset() is called before the scheduler is

started.

Return Values

pdPASS The reset command was successfully sent to the timer command queue.

If a block time was specified (xTicksToWait was not zero), then it is possible that

the calling task was placed into the Blocked state to wait for space to become

available on the timer command queue before the function returned, but data was

successfully written to the queue before the block time expired.

When the command is actually processed will depend on the priority of the timer

service task relative to other tasks in the system, although the timer’s expiry time is

relative to when xTimerReset() is actually called. The priority of the timer service

task is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The reset command was not sent to the timer command queue because the queue

was already full.

If a block time was specified (xTicksToWait was not zero) then the calling task will

have been placed into the Blocked state to wait for the timer service task to make

room in the queue, but the specified block time expired before that happened.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerReset() to be available.

290

Example

/* In this example, when a key is pressed, an LCD back-light is switched on. If 5 seconds pass
without a key being pressed, then the LCD back-light is switched off by a one-shot timer. */

TimerHandle_t xBacklightTimer = NULL;

/* The callback function assigned to the one-shot timer. In this case the parameter is not
used. */
void vBacklightTimerCallback(TimerHandle_t pxTimer)
{
 /* The timer expired, therefore 5 seconds must have passed since a key was pressed. Switch
 off the LCD back-light.
 vSetBacklightState(BACKLIGHT_OFF);
}

/* The key press event handler. */
void vKeyPressEventHandler(char cKey)
{
 /* Ensure the LCD back-light is on, then reset the timer that is responsible for turning the
 back-light off after 5 seconds of key inactivity. Wait 10 ticks for the reset command to be
 successfully sent if it cannot be sent immediately. */
 vSetBacklightState(BACKLIGHT_ON);
 if(xTimerReset(xBacklightTimer, 10) != pdPASS)
 {
 /* The reset command was not executed successfully. Take appropriate action here. */
 }

 /* Perform the rest of the key processing here. */
}

void main(void)
{
 /* Create then start the one-shot timer that is responsible for turning the back-light off
 if no keys are pressed within a 5 second period. */
 xBacklightTimer = xTimerCreate("BcklghtTmr" /* Just a text name, not used by the kernel. */
 pdMS_TO_TICKS(5000), /* The timer period in ticks. */
 pdFALSE, /* It is a one-shot timer. */
 0, /* ID not used by the callback so can take any value. */
 vBacklightTimerCallback /* The callback function that
 switches the LCD back-light off. */
);

 if(xBacklightTimer == NULL)
 {
 /* The timer was not created. */
 }
 else
 {
 /* Start the timer. No block time is specified, and even if one was it would be ignored
 because the scheduler has not yet been started. */
 if(xTimerStart(xBacklightTimer, 0) != pdPASS)
 {
 /* The timer could not be set into the Active state. */
 }
 }

 /* Create tasks here. */

 /* Starting the scheduler will start the timer running as xTimerStart has already been
 called. */
 xTaskStartScheduler();
}

Listing 212 Example use of xTimerReset()

 291

5.16 xTimerResetFromISR()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerResetFromISR(TimerHandle_t xTimer,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 213 xTimerResetFromISR() function prototype

Summary

A version of xTimerReset() that can be called from an interrupt service routine.

Parameters

xTimer The handle of the timer that is being started, reset, or restarted.

pxHigherPriorityTaskWoken xTimerResetFromISR() writes a command to the timer

command queue. If writing to the timer command queue causes

the timer service task to leave the Blocked state, and the timer

service task has a priority equal to or greater than the currently

executing task (the task that was interrupted), then

*pxHigherPriorityTaskWoken will be set to pdTRUE internally

within the xTimerResetFromISR() function. If

xTimerResetFromISR() sets this value to pdTRUE, then a

context switch should be performed before the interrupt exits.

Return Values

pdPASS The reset command was successfully sent to the timer command queue. When the

command is actually processed will depend on the priority of the timer service task

relative to other tasks in the system, although the timer’s expiry time is relative to

when xTimerResetFromISR() is actually called. The priority of the timer service

task is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The reset command was not sent to the timer command queue because the queue

was already full.

292

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerResetFromISR() to be

available.

Example

/* This scenario assumes xBacklightTimer has already been created. When a key is
pressed, an LCD back-light is switched on. If 5 seconds pass without a key being
pressed, then the LCD back-light is switched off by a one-shot timer. Unlike the
example given for the xTimerReset() function, the key press event handler is an
interrupt service routine. */

/* The callback function assigned to the one-shot timer. In this case the parameter
is not used. */
void vBacklightTimerCallback(TimerHandle_t pxTimer)
{
 /* The timer expired, therefore 5 seconds must have passed since a key was
 pressed. Switch off the LCD back-light. */
 vSetBacklightState(BACKLIGHT_OFF);
}

/* The key press interrupt service routine. */
void vKeyPressEventInterruptHandler(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Ensure the LCD back-light is on, then reset the timer that is responsible for
 turning the back-light off after 5 seconds of key inactivity. This is an
 interrupt service routine so can only call FreeRTOS API functions that end in
 "FromISR". */
 vSetBacklightState(BACKLIGHT_ON);

 /* xTimerStartFromISR() or xTimerResetFromISR() could be called here as both
 cause the timer to re-calculate its expiry time. xHigherPriorityTaskWoken was
 initialized to pdFALSE when it was declared (in this function). */
 if(xTimerResetFromISR(xBacklightTimer, &xHigherPriorityTaskWoken) != pdPASS)
 {
 /* The reset command was not executed successfully. Take appropriate action
 here. */
 }

 /* Perform the rest of the key processing here. */

 /* If xHigherPriorityTaskWoken equals pdTRUE, then a context switch should be
 performed. The syntax required to perform a context switch from inside an ISR
 varies from port to port, and from compiler to compiler. Inspect the demos for
 the port you are using to find the actual syntax required. */
 if(xHigherPriorityTaskWoken != pdFALSE)
 {
 /* Call the interrupt safe yield function here (actual function depends on
 the FreeRTOS port being used). */
 }
}

Listing 214 Example use of xTimerResetFromISR()

 293

5.17 vTimerSetTimerID()

#include “FreeRTOS.h”
#include “timers.h”

void vTimerSetTimerID(TimerHandle_t xTimer, void *pvNewID);

Listing 215 vTimerSetTimerID() function prototype

Summary

An identifier (ID) is assigned to a timer when the timer is created, and can be changed at any

time using the vTimerSetTimerID() API function.

If the same callback function is assigned to multiple timers, the timer identifier can be

inspected inside the callback function to determine which timer actually expired.

The timer identifier can also be used to store data in the timer between calls to the timer’s

callback function.

Parameters

xTimer The handle of the timer being updated with a new identifier.

pvNewID The value to which the timer’s identifier will be set.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerSetTimerID() to be

available.

294

Example

/* A callback function assigned to a timer. */
void TimerCallbackFunction(TimerHandle_t pxExpiredTimer)
{
uint32_t ulCallCount;

 /* A count of the number of times this timer has expired and executed its
 callback function is stored in the timer's ID. Retrieve the count, increment it,
 then save it back into the timer's ID. */
 ulCallCount = (uint32_t) pvTimerGetTimerID(pxExpiredTimer);
 ulCallCount++;
 vTimerSetTimerID(pxExpiredTimer, (void *) ulCallCount);
}

Listing 216 Example use of vTimerSetTimerID()

 295

5.18 xTimerStart()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerStart(TimerHandle_t xTimer, TickType_t xTicksToWait);

Listing 217 xTimerStart() function prototype

Summary

Starts a timer running. xTimerStartFromISR() is an equivalent function that can be called from

an interrupt service routine.

If the timer was not already running, then the timer will calculate an expiry time relative to

when xTimerStart() was called.

If the timer was already running, then xTimerStart() is functionally equivalent to xTimerReset().

If the timer is not stopped, deleted, or reset in the meantime, the callback function associated

with the timer will get called ‘n’ ticks after xTimerStart() was called, where ‘n’ is the timer’s

defined period.

Parameters

xTimer The timer to be reset, started, or restarted.

xTicksToWait Timer functionality is not provided by the core FreeRTOS code, but by a timer

service (or daemon) task. The FreeRTOS timer API sends commands to the

timer service task on a queue called the timer command queue. xTicksToWait

specifies the maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the timer command queue,

should the queue already be full.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

296

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

xTicksToWait is ignored if xTimerStart() is called before the scheduler is

started.

Return Values

pdPASS The start command was successfully sent to the timer command queue.

If a block time was specified (xTicksToWait was not zero), then it is possible that

the calling task was placed into the Blocked state to wait for space to become

available on the timer command queue before the function returned, but data was

successfully written to the queue before the block time expired.

When the command is actually processed will depend on the priority of the timer

service task relative to other tasks in the system, although the timer’s expiry time is

relative to when xTimerStart() is actually called. The priority of the timer service

task is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The start command was not sent to the timer command queue because the queue

was already full.

If a block time was specified (xTicksToWait was not zero) then the calling task will

have been placed into the Blocked state to wait for the timer service task to make

room in the queue, but the specified block time expired before that happened.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerStart() to be available.

Example

See the example provided for the xTimerCreate() API function.

 297

5.19 xTimerStartFromISR()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerStartFromISR(TimerHandle_t xTimer,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 218 xTimerStartFromISR() macro prototype

Summary

A version of xTimerStart() that can be called from an interrupt service routine.

Parameters

xTimer The handle of the timer that is being started, reset, or restarted.

pxHigherPriorityTaskWoken xTimerStartFromISR() writes a command to the timer command

queue. If writing to the timer command queue causes the timer

service task to leave the Blocked state, and the timer service

task has a priority equal to or greater than the currently

executing task (the task that was interrupted), then

*pxHigherPriorityTaskWoken will be set to pdTRUE internally

within the xTimerStartFromISR() function. If

xTimerStartFromISR() sets this value to pdTRUE, then a context

switch should be performed before the interrupt exits.

Return Values

pdPASS The start command was successfully sent to the timer command queue. When the

command is actually processed will depend on the priority of the timer service task

relative to other tasks in the system, although the timer’s expiry time is relative to

when xTimerStartFromISR() is actually called. The priority of the timer service task

is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The start command was not sent to the timer command queue because the queue

was already full.

298

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerStartFromISR() to be

available.

Example

/* This scenario assumes xBacklightTimer has already been created. When a key is
pressed, an LCD back-light is switched on. If 5 seconds pass without a key being
pressed, then the LCD back-light is switched off by a one-shot timer. Unlike the
example given for the xTimerReset() function, the key press event handler is an
interrupt service routine. */

/* The callback function assigned to the one-shot timer. In this case the parameter
is not used. */
void vBacklightTimerCallback(TimerHandle_t pxTimer)
{
 /* The timer expired, therefore 5 seconds must have passed since a key was
 pressed. Switch off the LCD back-light. */
 vSetBacklightState(BACKLIGHT_OFF);
}

/* The key press interrupt service routine. */
void vKeyPressEventInterruptHandler(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Ensure the LCD back-light is on, then restart the timer that is responsible
 for turning the back-light off after 5 seconds of key inactivity. This is an
 interrupt service routine so can only call FreeRTOS API functions that end in
 "FromISR". */
 vSetBacklightState(BACKLIGHT_ON);

 /* xTimerStartFromISR() or xTimerResetFromISR() could be called here as both
 cause the timer to re-calculate its expiry time. xHigherPriorityTaskWoken was
 initialized to pdFALSE when it was declared (in this function). */
 if(xTimerStartFromISR(xBacklightTimer, &xHigherPriorityTaskWoken) != pdPASS)
 {
 /* The start command was not executed successfully. Take appropriate action
 here. */
 }

 /* Perform the rest of the key processing here. */

 /* If xHigherPriorityTaskWoken equals pdTRUE, then a context switch should be
 performed. The syntax required to perform a context switch from inside an ISR
 varies from port to port, and from compiler to compiler. Inspect the demos for
 the port you are using to find the actual syntax required. */
 if(xHigherPriorityTaskWoken != pdFALSE)
 {
 /* Call the interrupt safe yield function here (actual function depends on
 the FreeRTOS port being used). */
 }
}

Listing 219 Example use of xTimerStartFromISR()

 299

5.20 xTimerStop()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerStop(TimerHandle_t xTimer, TickType_t xTicksToWait);

Listing 220 xTimerStop() function prototype

Summary

Stops a timer running. xTimerStopFromISR() is an equivalent function that can be called from

an interrupt service routine.

Parameters

xTimer The timer to be stopped.

xTicksToWait Timer functionality is not provided by the core FreeRTOS code, but by a timer

service (or daemon) task. The FreeRTOS timer API sends commands to the

timer service task on a queue called the timer command queue. xTicksToWait

specifies the maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the timer command queue,

should the queue already be full.

The block time is specified in tick periods, so the absolute time it represents is

dependent on the tick frequency. The pdMS_TO_TICKS() macro can be used

to convert a time specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1

in FreeRTOSConfig.h.

xTicksToWait is ignored if xTimerStop() is called before the scheduler is

started.

Return Values

pdPASS The stop command was successfully sent to the timer command queue.

300

If a block time was specified (xTicksToWait was not zero), then it is possible that

the calling task was placed into the Blocked state to wait for space to become

available on the timer command queue before the function returned, but data was

successfully written to the queue before the block time expired.

When the command is actually processed will depend on the priority of the timer

service task relative to other tasks in the system. The priority of the timer service

task is set by the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The stop command was not sent to the timer command queue because the queue

was already full.

If a block time was specified (xTicksToWait was not zero) then the calling task will

have been placed into the Blocked state to wait for the timer service task to make

room in the queue, but the specified block time expired before that happened.

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerStop() to be available.

Example

See the example provided for the xTimerCreate() API function.

 301

5.21 xTimerStopFromISR()

#include “FreeRTOS.h”
#include “timers.h”

BaseType_t xTimerStopFromISR(TimerHandle_t xTimer,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 221 xTimerStopFromISR() function prototype

Summary

A version of xTimerStop() that can be called from an interrupt service routine.

Parameters

xTimer The handle of the timer that is being stopped.

pxHigherPriorityTaskWoken xTimerStopFromISR() writes a command to the timer command

queue. If writing to the timer command queue causes the timer

service task to leave the Blocked state, and the timer service

task has a priority equal to or greater than the currently

executing task (the task that was interrupted), then

*pxHigherPriorityTaskWoken will be set to pdTRUE internally

within the xTimerStopFromISR() function. If

xTimerStopFromISR() sets this value to pdTRUE, then a context

switch should be performed before the interrupt exits.

Return Values

pdPASS The stop command was successfully sent to the timer command queue. When the

command is actually processed will depend on the priority of the timer service task

relative to other tasks in the system. The priority of the timer service task is set by

the configTIMER_TASK_PRIORITY configuration constant.

pdFAIL The stop command was not sent to the timer command queue because the queue

was already full.

302

Notes

configUSE_TIMERS must be set to 1 in FreeRTOSConfig.h for xTimerStopFromISR() to be

available.

Example

/* This scenario assumes xTimer has already been created and started. When an
interrupt occurs, the timer should be simply stopped. */

/* The interrupt service routine that stops the timer. */
void vAnExampleInterruptServiceRoutine(void)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* The interrupt has occurred - simply stop the timer. xHigherPriorityTaskWoken
 was set to pdFALSE where it was defined (within this function). As this is an
 interrupt service routine, only FreeRTOS API functions that end in "FromISR" can
 be used. */
 if(xTimerStopFromISR(xTimer, &xHigherPriorityTaskWoken) != pdPASS)
 {
 /* The stop command was not executed successfully. Take appropriate action
 here. */
 }

 /* If xHigherPriorityTaskWoken equals pdTRUE, then a context switch should be
 performed. The syntax required to perform a context switch from inside an ISR
 varies from port to port, and from compiler to compiler. Inspect the demos for
 the port you are using to find the actual syntax required. */
 if(xHigherPriorityTaskWoken != pdFALSE)
 {
 /* Call the interrupt safe yield function here (actual function depends on
 the FreeRTOS port being used). */
 }
}

Listing 222 Example use of xTimerStopFromISR()

 303

Chapter 6

Event Groups API

304

6.1 xEventGroupClearBits()

#include “FreeRTOS.h”
#include “event_groups.h”

EventBits_t xEventGroupClearBits(EventGroupHandle_t xEventGroup,
 const EventBits_t uxBitsToClear);

Listing 223 xEventGroupClearBits() function prototype

Summary

Clear bits (flags) within an RTOS event group. This function cannot be called from an

interrupt. See xEventGroupClearBitsFromISR() for a version that can be called from an

interrupt.

Parameters

xEventGroup The event group in which the bits are to be cleared. The event group must

have previously been created using a call to xEventGroupCreate().

uxBitsToClear A bitwise value that indicates the bit or bits to clear in the event group. For

example set uxBitsToClear to 0x08 to clear just bit 3. Set uxBitsToClear to

0x09 to clear bit 3 and bit 0.

Return Values

All values The value of the bits in the event group before any bits were cleared.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupClearBits() function to be available.

 305

Example

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

void aFunction(EventGroupHandle_t xEventGroup)
{
EventBits_t uxBits;

 /* Clear bit 0 and bit 4 in xEventGroup. */
 uxBits = xEventGroupClearBits(
 xEventGroup, /* The event group being updated. */
 BIT_0 | BIT_4);/* The bits being cleared. */

 if((uxBits & (BIT_0 | BIT_4)) == (BIT_0 | BIT_4))
 {
 /* Both bit 0 and bit 4 were set before xEventGroupClearBits()
 was called. Both will now be clear (not set). */
 }
 else if((uxBits & BIT_0) != 0)
 {
 /* Bit 0 was set before xEventGroupClearBits() was called. It will
 now be clear. */
 }
 else if((uxBits & BIT_4) != 0)
 {
 /* Bit 4 was set before xEventGroupClearBits() was called. It will
 now be clear. */
 }
 else
 {
 /* Neither bit 0 nor bit 4 were set in the first place. */
 }
}

Listing 224 Example use of xEventGroupClearBits()

306

6.2 xEventGroupClearBitsFromISR()

#include “FreeRTOS.h”
#include “event_groups.h”

BaseType_t xEventGroupClearBitsFromISR(EventGroupHandle_t xEventGroup,
 const EventBits_t uxBitsToClear);

Listing 225 xEventGroupClearBitsFromISR() function prototype

Summary

A version of xEventGroupClearBits() that can be called from an interrupt.

xEventGroupClearBitsFromISR() sends a message to the RTOS daemon task to have the

clear operation performed in the context of the daemon task. The priority of the daemon task

is set by configTIMER_TASK_PRIORITY in FreeRTOSConfig.h.

Parameters

xEventGroup The event group in which the bits are to be cleared. The event group must

have previously been created using a call to xEventGroupCreate().

uxBitsToClear A bitwise value that indicates the bit or bits to clear in the event group. For

example set uxBitsToClear to 0x08 to clear just bit 3. Set uxBitsToClear to

0x09 to clear bit 3 and bit 0.

Return Values

pdPASS The message was sent to the RTOS daemon task.

pdFAIL The message could not be sent to the RTOS daemon task (also known as

the timer service task) because the timer command queue was full. The

length of the queue is set by the configTIMER_QUEUE_LENGTH setting in

FreeRTOSConfig.h.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupClearBitsFromISR() function to be available.

 307

308

Example

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

/* This code assumes the event group referenced by the xEventGroup variable has
already been created using a call to xEventGroupCreate(). */
void anInterruptHandler(void)
{
BaseType_t xSuccess;

 /* Clear bit 0 and bit 4 in xEventGroup. */
 xSuccess = xEventGroupClearBitsFromISR(
 xEventGroup, /* The event group being updated. */
 BIT_0 | BIT_4);/* The bits being cleared. */

 if(xSuccess == pdPASS)
 {
 /* The clear bits message was sent to the daemon task. */
 }
 else
 {
 /* The clear bits message was not sent to the daemon task. */
 }
}

Listing 226 Example use of xEventGroupClearBitsFromISR()

 309

6.3 xEventGroupCreate()

#include “FreeRTOS.h”
#include “event_groups.h”

EventGroupHandle_t xEventGroupCreate(void);

Listing 227 xEventGroupCreate() function prototype

Summary

Creates a new event group and returns a handle by which the created event group can be

referenced.

Each event group requires a [very] small amount of RAM that is used to hold the event group’s

state. If an event group is created using xEventGroupCreate() then this RAM is automatically

allocated from the FreeRTOS heap. If an event group is created using

xEventGroupCreateStatic() then the RAM is provided by the application writer, which requires

an additional parameter, but allows the RAM to be statically allocated at compile time.

Event groups are stored in variables of type EventGroupHandle_t. The number of bits (or

flags) implemented within an event group is 8 if configUSE_16_BIT_TICKS is set to 1, or 24 if

configUSE_16_BIT_TICKS is set to 0. The dependency on configUSE_16_BIT_TICKS results

from the data type used for thread local storage in the internal implementation of RTOS tasks.

This function cannot be called from an interrupt.

Parameters

None

Return Values

NULL The event group could not be created because there was insufficient

FreeRTOS heap available.

Any other value The event group was created and the value returned is the handle of the

created event group.

310

Notes

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h (or left

undefined, in which case it will default to 1) and the RTOS source file

FreeRTOS/source/event_groups.c must be included in the build for the xEventGroupCreate()

function to be available.

Example

/* Declare a variable to hold the created event group. */
EventGroupHandle_t xCreatedEventGroup;

/* Attempt to create the event group. */
xCreatedEventGroup = xEventGroupCreate();

/* Was the event group created successfully? */
if(xCreatedEventGroup == NULL)
{
 /* The event group was not created because there was insufficient
 FreeRTOS heap available. */
}
else
{
 /* The event group was created. */
}

Listing 228 Example use of xEventGroupCreate()

 311

6.4 xEventGroupCreateStatic()

#include “FreeRTOS.h”
#include “event_groups.h”

EventGroupHandle_t xEventGroupCreateStatic(StaticEventGroup_t *pxEventGroupBuffer);

Listing 229 xEventGroupCreateStatic() function prototype

Summary

Creates a new event group and returns a handle by which the created event group can be

referenced.

Each event group requires a [very] small amount of RAM that is used to hold the event group’s

state. If an event group is created using xEventGroupCreate() then this RAM is automatically

allocated from the FreeRTOS heap. If an event group is created using

xEventGroupCreateStatic() then the RAM is provided by the application writer, which requires

an additional parameter, but allows the RAM to be statically allocated at compile time.

Event groups are stored in variables of type EventGroupHandle_t. The number of bits (or

flags) implemented within an event group is 8 if configUSE_16_BIT_TICKS is set to 1, or 24 if

configUSE_16_BIT_TICKS is set to 0. The dependency on configUSE_16_BIT_TICKS results

from the data type used for thread local storage in the internal implementation of RTOS tasks.

Parameters

pxEventGroupBuffer Must point to a variable of type StaticEventGroup_t, in which the event

group’s data structure will be stored.

Return Values

NULL The event group could not be created because pxEventGroupBuffer was

NULL.

Any other value The event group was created and the value returned is the handle of the

created event group.

312

Notes

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h, and the

RTOS source file FreeRTOS/source/event_groups.c must be included in the build, for the

xEventGroupCreateStatic() function to be available.

Example

/* Declare a variable to hold the handle of the created event group. */
EventGroupHandle_t xEventGroupHandle;

/* Declare a variable to hold the data associated with the created event group. */
StaticEventGroup_t xCreatedEventGroup;

void vAFunction(void)
{
 /* Attempt to create the event group. */
 xEventGroupHandle = xEventGroupCreate(&xCreatedEventGroup);

 /* pxEventGroupBuffer was not null so expect the event group to have been
 created. */
 configASSERT(xEventGroupHandle);
}

Listing 230 Example use of xEventGroupCreateStatic()

 313

6.5 vEventGroupDelete()

#include “FreeRTOS.h”
#include “event_groups.h”

void vEventGroupDelete(EventGroupHandle_t xEventGroup);

Listing 231 vEventGroupDelete() function prototype

Summary

Delete an event group that was previously created using a call to xEventGroupCreate().

Tasks that are blocked on the event group being deleted will be unblocked and report an event

group value of 0.

This function must not be called from an interrupt.

Parameters

xEventGroup The event group to delete.

Return Values

None

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

vEventGroupDelete() function to be available.

314

6.6 xEventGroupGetBits()

#include “FreeRTOS.h”
#include “event_groups.h”

EventBits_t xEventGroupGetBits(EventGroupHandle_t xEventGroup);

Listing 232 xEventGroupGetBits() function prototype

Summary

Returns the current value of the event bits (event flags) in an event group. This function

cannot be used from an interrupt. See xEventGroupGetBitsFromISR() for a version that can

be used in an interrupt.

Parameters

xEventGroup The event group being queried. The event group must have previously been

created using a call to xEventGroupCreate().

Return Values

All values The value of the event bits in the event group at the time

xEventGroupGetBits() was called.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupGetBits() function to be available.

 315

6.7 xEventGroupGetBitsFromISR()

#include “FreeRTOS.h”
#include “event_groups.h”

EventBits_t xEventGroupGetBitsFromISR(EventGroupHandle_t xEventGroup);

Listing 233 xEventGroupGetBitsFromISR() function prototype

Summary

A version of xEventGroupGetBits() that can be called from an interrupt.

Parameters

xEventGroup The event group being queried. The event group must have previously been

created using a call to xEventGroupCreate().

Return Values

All values The value of the event bits in the event group at the time

xEventGroupGetBitsFromISR() was called.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupGetBitsFromISR() function to be available.

316

6.8 xEventGroupSetBits()

#include “FreeRTOS.h”
#include “event_groups.h”

EventBits_t xEventGroupSetBits(EventGroupHandle_t xEventGroup,
 const EventBits_t uxBitsToSet);

Listing 234 xEventGroupSetBits() function prototype

Summary

Sets bits (flags) within an RTOS event group. This function cannot be called from an interrupt.

See xEventGroupSetBitsFromISR() for a version that can be called from an interrupt.

Setting bits in an event group will automatically unblock any tasks that were blocked waiting

for the bits to be set.

Parameters

xEventGroup The event group in which the bits are to be set. The event group must have

previously been created using a call to xEventGroupCreate().

uxBitsToSet A bitwise value that indicates the bit or bits to set in the event group. For

example, set uxBitsToSet to 0x08 to set only bit 3. Set uxBitsToSet to 0x09 to

set bit 3 and bit 0.

Return Values

Any Value The value of the bits in the event group at the time the call to

xEventGroupSetBits() returned.

There are two reasons why the returned value might have the bits specified

by the uxBitsToSet parameter cleared:

1. If setting a bit results in a task that was waiting for the bit leaving the

blocked state then it is possible the bit will have been cleared

automatically (see the xClearBitsOnExit parameter of

xEventGroupWaitBits()).

 317

2. Any task that leaves the blocked state as a result of the bits being

set (or otherwise any Ready state task) that has a priority above that

of the task that called xEventGroupSetBits() will execute and may

change the event group value before the call to

xEventGroupSetBits() returns.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupSetBits() function to be available.

Example

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

void aFunction(EventGroupHandle_t xEventGroup)
{
EventBits_t uxBits;

 /* Set bit 0 and bit 4 in xEventGroup. */
 uxBits = xEventGroupSetBits(
 xEventGroup, /* The event group being updated. */
 BIT_0 | BIT_4);/* The bits being set. */

 if((uxBits & (BIT_0 | BIT_4)) == (BIT_0 | BIT_4))
 {
 /* Both bit 0 and bit 4 remained set when the function returned. */
 }
 else if((uxBits & BIT_0) != 0)
 {
 /* Bit 0 remained set when the function returned, but bit 4 was
 cleared. It might be that bit 4 was cleared automatically as a
 task that was waiting for bit 4 was removed from the Blocked
 state. */
 }
 else if((uxBits & BIT_4) != 0)
 {
 /* Bit 4 remained set when the function returned, but bit 0 was
 cleared. It might be that bit 0 was cleared automatically as a
 task that was waiting for bit 0 was removed from the Blocked
 state. */
 }
 else
 {
 /* Neither bit 0 nor bit 4 remained set. It might be that a task
 was waiting for both of the bits to be set, and the bits were cleared
 as the task left the Blocked state. */
 }
}

Listing 235 Example use of xEventGroupSetBits()

318

6.9 xEventGroupSetBitsFromISR()

#include “FreeRTOS.h”
#include “event_groups.h”

BaseType_t xEventGroupSetBitsFromISR(EventGroupHandle_t xEventGroup,
 const EventBits_t uxBitsToSet,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 236 xEventGroupSetBitsFromISR() function prototype

Summary

Set bits (flags) within an event group. A version of xEventGroupSetBits() that can be called

from an interrupt service routine (ISR).

Setting bits in an event group will automatically unblock any tasks that were blocked waiting

for the bits to be set.

Setting bits in an event group is not a deterministic operation because there are an unknown

number of tasks that may be waiting for the bit or bits being set. FreeRTOS does not allow

non-deterministic operations to be performed in interrupts or from critical sections. Therefore

xEventGroupSetBitsFromISR() sends a message to the RTOS daemon task to have the set

operation performed in the context of the daemon task - where a scheduler lock is used in

place of a critical section. The priority of the daemon task is set by

configTIMER_TASK_PRIORITY in FreeRTOSConfig.h.

Parameters

xEventGroup The event group in which the bits are to be set. The event

group must have previously been created using a call to

xEventGroupCreate().

uxBitsToSet A bitwise value that indicates the bit or bits to set in the event

group. For example, set uxBitsToSet to 0x08 to set only bit 3.

Set uxBitsToSet to 0x09 to set bit 3 and bit 0.

pxHigherPriorityTaskWoken Calling xEventGroupSetBitsFromISR() results in a message

being sent to the RTOS daemon task. If the priority of the

daemon task is higher than the priority of the currently running

 319

task (the task the interrupt interrupted) then

*pxHigherPriorityTaskWoken will be set to pdTRUE by

xEventGroupSetBitsFromISR(), indicating that a context switch

should be requested before the interrupt exits. For that reason

*pxHigherPriorityTaskWoken must be initialized to pdFALSE.

See the example code below.

Return Values

pdPASS The message was sent to the RTOS daemon task.

pdFAIL The message could not be sent to the RTOS daemon task (also known as

the timer service task) because the timer command queue was full. The

length of the queue is set by the configTIMER_QUEUE_LENGTH setting in

FreeRTOSConfig.h.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupSetBitsFromISR() function to be available.

INCLUDE_xEventGroupSetBitsFromISR, configUSE_TIMERS and

INCLUDE_xTimerPendFunctionCall must all be set to 1 in FreeRTOSConfig.h for the

xEventGroupSetBitsFromISR() function to be available.

320

Example

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

/* An event group which it is assumed has already been created by a call to
xEventGroupCreate(). */
EventGroupHandle_t xEventGroup;

void anInterruptHandler(void)
{
BaseType_t xHigherPriorityTaskWoken, xResult;

 /* xHigherPriorityTaskWoken must be initialized to pdFALSE. */
 xHigherPriorityTaskWoken = pdFALSE;

 /* Set bit 0 and bit 4 in xEventGroup. */
 xResult = xEventGroupSetBitsFromISR(
 xEventGroup, /* The event group being updated. */
 BIT_0 | BIT_4 /* The bits being set. */
 &xHigherPriorityTaskWoken);

 /* Was the message posted successfully? */
 if(xResult != pdFAIL)
 {
 /* If xHigherPriorityTaskWoken is now set to pdTRUE then a context
 switch should be requested. The macro used is port specific and will
 be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
 the documentation page for the port being used. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
 }
}

Listing 237 Example use of xEventGroupSetBitsFromISR()

 321

6.10 xEventGroupSync()

#include “FreeRTOS.h”
#include “event_groups.h”

EventBits_t xEventGroupSync(EventGroupHandle_t xEventGroup,
 const EventBits_t uxBitsToSet,
 const EventBits_t uxBitsToWaitFor,
 TickType_t xTicksToWait);

Listing 238 xEventGroupSync() function prototype

Summary

Atomically set bits (flags) within an event group, then wait for a combination of bits to be set

within the same event group. This functionality is typically used to synchronize multiple tasks

(often called a task rendezvous), where each task has to wait for the other tasks to reach a

synchronization point before proceeding.

The function will return before its block time expires if the bits specified by the uxBitsToWaitFor

parameter are set, or become set within that time. In this case all the bits specified by

uxBitsToWaitFor will be automatically cleared before the function returns.

This function cannot be used from an interrupt.

Parameters

xEventGroup The event group in which the bits are being set and tested. The event group

must have previously been created using a call to xEventGroupCreate().

uxBitsToSet A bitwise value that indicates the bit or bits to set in the event group before

determining if (and possibly waiting for) all the bits specified by the

uxBitsToWaitFor parameter are set. For example, set uxBitsToSet to 0x04

to set bit 2 within the event group.

uxBitsToWaitFor A bitwise value that indicates the bit or bits to test inside the event group.

For example, set uxBitsToWaitFor to 0x05 to wait for bit 0 and bit 2. Set

uxBitsToWaitFor to 0x07 to wait for bit 0 and bit 1 and bit 2. Etc.

xTicksToWait The maximum amount of time (specified in 'ticks') to wait for all the bits

specified by the uxBitsToWaitFor parameter value to become set.

322

Return Values

All values The value of the event group at the time either the bits being waited for

became set, or the block time expired. Test the return value to know which

bits were set.

If xEventGroupSync() returned because its timeout expired then not all the

bits being waited for will be set in the returned value.

If xEventGroupSync() returned because all the bits it was waiting for were

set then the returned value is the event group value before any bits were

automatically cleared.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupSync() function to be available.

 323

Example

/* Bits used by the three tasks. */
#define TASK_0_BIT (1 << 0)
#define TASK_1_BIT (1 << 1)
#define TASK_2_BIT (1 << 2)

#define ALL_SYNC_BITS (TASK_0_BIT | TASK_1_BIT | TASK_2_BIT)

/* Use an event group to synchronize three tasks. It is assumed this event
group has already been created elsewhere. */
EventGroupHandle_t xEventBits;

void vTask0(void *pvParameters)
{
EventBits_t uxReturn;
TickType_t xTicksToWait = pdMS_TO_TICKS(100);

 for(;;)
 {
 /* Perform task functionality here. */
 . . .

 /* Set bit 0 in the event group to note this task has reached the
 sync point. The other two tasks will set the other two bits defined
 by ALL_SYNC_BITS. All three tasks have reached the synchronization
 point when all the ALL_SYNC_BITS bits are set. Wait a maximum of 100ms
 for this to happen. */
 uxReturn = xEventGroupSync(xEventBits,
 TASK_0_BIT, /* The bit to set. */
 ALL_SYNC_BITS, /* The bits to wait for. */
 xTicksToWait);/* Timeout value. */

 if((uxReturn & ALL_SYNC_BITS) == ALL_SYNC_BITS)
 {
 /* All three tasks reached the synchronization point before the call
 to xEventGroupSync() timed out. */
 }
 }
}

void vTask1(void *pvParameters)
{
 for(;;)
 {
 /* Perform task functionality here. */
 . . .

 /* Set bit 1 in the event group to note this task has reached the
 synchronization point. The other two tasks will set the other two
 bits defined by ALL_SYNC_BITS. All three tasks have reached the
 synchronization point when all the ALL_SYNC_BITS are set. Wait
 indefinitely for this to happen. */
 xEventGroupSync(xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY);

 /* xEventGroupSync() was called with an indefinite block time, so
 this task will only reach here if the synchronization was made by all
 three tasks, so there is no need to test the return value. */
 }
}

324

void vTask2(void *pvParameters)
{
 for(;;)
 {
 /* Perform task functionality here. */
 . . .

 /* Set bit 2 in the event group to note this task has reached the
 synchronization point. The other two tasks will set the other two
 bits defined by ALL_SYNC_BITS. All three tasks have reached the
 synchronization point when all the ALL_SYNC_BITS are set. Wait
 indefinitely for this to happen. */
 xEventGroupSync(xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY);

 /* xEventGroupSync() was called with an indefinite block time, so
 this task will only reach here if the synchronization was made by all
 three tasks, so there is no need to test the return value. */
 }
}

Listing 239 Example use of xEventGroupSync()

 325

6.11 xEventGroupWaitBits()

#include “FreeRTOS.h”
#include “event_groups.h”

EventBits_t xEventGroupWaitBits(const EventGroupHandle_t xEventGroup,
 const EventBits_t uxBitsToWaitFor,
 const BaseType_t xClearOnExit,
 const BaseType_t xWaitForAllBits,
 TickType_t xTicksToWait);

Listing 240 xEventGroupWaitBits() function prototype

Summary

Read bits within an RTOS event group, optionally entering the Blocked state (with a timeout)

to wait for a bit or group of bits to become set.

This function cannot be called from an interrupt.

Parameters

xEventGroup The event group in which the bits are being tested. The event group must

have previously been created using a call to xEventGroupCreate().

uxBitsToWaitFor A bitwise value that indicates the bit or bits to test inside the event group.

For example, to wait for bit 0 and/or bit 2 set uxBitsToWaitFor to 0x05. To

wait for bits 0 and/or bit 1 and/or bit 2 set uxBitsToWaitFor to 0x07. Etc.

uxBitsToWaitFor must not be set to 0.

xClearOnExit If xClearOnExit is set to pdTRUE then any bits set in the value passed as

the uxBitsToWaitFor parameter will be cleared in the event group before

xEventGroupWaitBits() returns if xEventGroupWaitBits() returns for any

reason other than a timeout. The timeout value is set by the xTicksToWait

parameter.

If xClearOnExit is set to pdFALSE then the bits set in the event group are

not altered when the call to xEventGroupWaitBits() returns.

xWaitAllBits xWaitForAllBits is used to create either a logical AND test (where all bits

must be set) or a logical OR test (where one or more bits must be set) as

326

follows:

If xWaitForAllBits is set to pdTRUE then xEventGroupWaitBits() will return

when either all the bits set in the value passed as the uxBitsToWaitFor

parameter are set in the event group or the specified block time expires.

If xWaitForAllBits is set to pdFALSE then xEventGroupWaitBits() will return

when any of the bits set in the value passed as the uxBitsToWaitFor

parameter are set in the event group or the specified block time expires.

xTicksToWait The maximum amount of time (specified in 'ticks') to wait for one/all

(depending on the xWaitForAllBits value) of the bits specified by

uxBitsToWaitFor to become set.

Return Values

Any Value The value of the event group at the time either the event bits being waited

for became set, or the block time expired. The current value of the event

bits in an event group will be different to the returned value if a higher

priority task or interrupt changed the value of an event bit between the

calling task leaving the Blocked state and exiting the xEventGroupWaitBits()

function.

Test the return value to know which bits were set. If xEventGroupWaitBits()

returned because its timeout expired then not all the bits being waited for

will be set. If xEventGroupWaitBits() returned because the bits it was

waiting for were set then the returned value is the event group value before

any bits were automatically cleared in the case that xClearOnExit parameter

was set to pdTRUE.

Notes

The RTOS source file FreeRTOS/source/event_groups.c must be included in the build for the

xEventGroupWaitBits() function to be available.

 327

Example

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

void aFunction(EventGroupHandle_t xEventGroup)
{
EventBits_t uxBits;
const TickType_t xTicksToWait = pdMS_TO_TICKS(100);

 /* Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
 the event group. Clear the bits before exiting. */
 uxBits = xEventGroupWaitBits(
 xEventGroup, /* The event group being tested. */
 BIT_0 | BIT_4, /* The bits within the event group to wait for. */
 pdTRUE, /* BIT_0 and BIT_4 should be cleared before returning. */
 pdFALSE, /* Don't wait for both bits, either bit will do. */
 xTicksToWait);/* Wait a maximum of 100ms for either bit to be set. */

 if((uxBits & (BIT_0 | BIT_4)) == (BIT_0 | BIT_4))
 {
 /* xEventGroupWaitBits() returned because both bits were set. */
 }
 else if((uxBits & BIT_0) != 0)
 {
 /* xEventGroupWaitBits() returned because just BIT_0 was set. */
 }
 else if((uxBits & BIT_4) != 0)
 {
 /* xEventGroupWaitBits() returned because just BIT_4 was set. */
 }
 else
 {
 /* xEventGroupWaitBits() returned because xTicksToWait ticks passed
 without either BIT_0 or BIT_4 becoming set. */
 }
}

Listing 241 Example use of xEventGroupWaitBits()

328

Chapter 7

Kernel Configuration

 329

7.1 FreeRTOSConfig.h

Kernel configuration is achieved by setting #define constants in FreeRTOSConfig.h. Each

application that uses FreeRTOS must provide a FreeRTOSConfig.h header file.

All the demo application projects included in the FreeRTOS download contains a pre-defined

FreeRTOSConfig.h that can be used as a reference or simply copied. Note, however, that

some of the demo projects were generated before all the options documented in this chapter

were available, so the FreeRTOSConfig.h header files they contain will not include all the

constants and options that are documented in the following sub-sections.

330

7.2 Constants that Start “INCLUDE_”

Constants that start with the text “INCLUDE_” are used to included or excluded FreeRTOS API

functions from the application. For example, setting INCLUDE_vTaskPrioritySet to 0 will

exclude the vTaskPrioritySet() API function from the build, meaning the application cannot call

vTaskPrioritySet(). Setting INCLUDE_vTaskPrioritySet to 1 will include the vTaskPrioritySet()

API function in the build, so the application can call vTaskPrioritySet().

In some cases, a single INCLUDE_ configuration constant will include or exclude multiple API

functions.

The “INCLUDE_” constants are provided to permit the code size to be reduced by removing

FreeRTOS functions and features that are not required. However, most linkers will, by default,

automatically remove unreferenced code unless optimization is turned completely off. Linkers

that do not have this default behavior can normally be configured to remove unreferenced

code. Therefore, in most practical cases, the INCLUDE_ configuration constants will have little

if any impact on the executable code size.

It is possible that excluding an API function from an application will also reduce the amount of

RAM used by the FreeRTOS kernel. For example, removing the vTaskSuspend() API function

will also prevent the structures that would otherwise reference Suspended tasks from ever

being allocated.

INCLUDE_xEventGroupSetBitsFromISR

configUSE_TIMERS, INCLUDE_xTimerPendFunctionCall and

INCLUDE_xEventGroupSetBitsFromISR must all be set to 1 for the

xEventGroupSetBitsFromISR () API function to be available.

INCLUDE_xSemaphoreGetMutexHolder

INCLUDE_xSemaphoreGetMutexHolder must be set to 1 for the

xSemaphoreGetMutexHolder() API function to be available.

 331

INCLUDE_xTaskAbortDelay

INCLUDE_xTaskAbortDelay must be set to 1 for the xTaskAbortDelay() API function to be

available.

INCLUDE_vTaskDelay

INCLUDE_vTaskDelay must be set to 1 for the vTaskDelay() API function to be available.

INCLUDE_vTaskDelayUntil

INCLUDE_vTaskDelayUntil must be set to 1 for the vTaskDelayUntil() API function to be

available.

INCLUDE_vTaskDelete

INCLUDE_vTaskDelete must be set to 1 for the vTaskDelete() API function to be available.

INCLUDE_xTaskGetCurrentTaskHandle

INCLUDE_xTaskGetCurrentTaskHandle must be set to 1 for the
xTaskGetCurrentTaskHandle() API function to be available.

INCLUDE_xTaskGetHandle

INCLUDE_xTaskGetHandle must be set to 1 for the xTaskGetHandle() API function to be
available.

INCLUDE_xTaskGetIdleTaskHandle

INCLUDE_xTaskGetIdleTaskHandle must be set to 1 for the xTaskGetIdleTaskHandle() API

function to be available.

INCLUDE_xTaskGetSchedulerState

INCLUDE_xTaskGetSchedulerState must be set to 1 for the xTaskGetSchedulerState() API

function to be available.

332

INCLUDE_uxTaskGetStackHighWaterMark

INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 for the

uxTaskGetStackHighWaterMark() API function to be available.

INCLUDE_uxTaskPriorityGet

INCLUDE_uxTaskPriorityGet must be set to 1 for the uxTaskPriorityGet() API function to be

available.

INCLUDE_vTaskPrioritySet

INCLUDE_vTaskPrioritySet must be set to 1 for the vTaskPrioritySet() API function to be

available.

INCLUDE_xTaskResumeFromISR

INCLUDE_xTaskResumeFromISR and INCLUDE_vTaskSuspend must both be set to 1 for the

xTaskResumeFromISR() API function to be available.

INCLUDE_eTaskGetState

INCLUDE_eTaskGetState must be set to 1 for the eTaskGetState() API function to be

available.

INCLUDE_vTaskSuspend

INCLUDE_vTaskSuspend must be set to 1 for the vTaskSuspend(), vTaskResume(), and

xTaskIsTaskSuspended() API functions to be available.

INCLUDE_vTaskSuspend and INCLUDE_xTaskResumeFromISR must both be set to 1 for the

xTaskResumeFromISR() API function to be available.

Some queue and semaphore API functions allow the calling task to opt to be placed into the

Blocked state to wait for a queue or semaphore event to occur. These API functions require

that a maximum block period, or time out, is specified. The calling task will then be held in the

Blocked state until either the queue or semaphore event occurs, or the block period expires.

The maximum block period that can be specified is defined by portMAX_DELAY. If

INCLUDE_vTaskSuspend is set to 0, then specifying a block period of portMAX_DELAY will

 333

result in the calling task being placed into the Blocked state for a maximum of

portMAX_DELAY ticks. If INCLUDE_vTaskSuspend is set to 1, then specifying a block period

of portMAX_DELAY will result in the calling task being placed into the Blocked state

indefinitely (without a time out). In the second case, the block period is indefinite, so the only

way out of the Blocked state is for the queue or semaphore event to occur.

INCLUDE_xTimerPendFunctionCall

configUSE_TIMERS and INCLUDE_xTimerPendFunctionCall must both be set to 1 for the

xTimerPendFunctionCall() and xTimerPendFunctionCallFromISR () API functions to be

available.

334

7.3 Constants that Start “config”

Constants that start with the text “config” define attributes of the kernel, or include or exclude

features of the kernel.

configAPPLICATION_ALLOCATED_HEAP

By default the FreeRTOS heap is declared by FreeRTOS and placed in memory by the linker.

Setting configAPPLICATION_ALLOCATED_HEAP to 1 allows the heap to instead be declared

by the application writer, which allows the application writer to place the heap wherever they

like in memory.

If heap_1.c, heap_2.c or heap_4.c is used, and configAPPLICATION_ALLOCATED_HEAP is

set to 1, then the application writer must provide a uint8_t array with the exact name and

dimension as shown in Listing 242. The array will be used as the FreeRTOS heap. How the

array is placed at a specific memory location is dependent on the compiler being used – refer

to your compiler’s documentation.

uint8_t ucHeap[configTOTAL_HEAP_SIZE];

Listing 242 Declaring an array that will be used as the FreeRTOS heap

configASSERT

Calls to configASSERT(x) exist at key points in the FreeRTOS kernel code.

If FreeRTOS is functioning correctly, and is being used correctly, then the configASSERT()

parameter will be non-zero. If the parameter is found to equal zero, then an error has

occurred.

It is likely that most errors trapped by configASSERT() will be a result of an invalid parameter

being passed into a FreeRTOS API function. configASSERT() can therefore assist in run time

debugging. However, defining configASSERT() will also increase the application code size,

and slow down its execution.

configASSERT() is equivalent to the standard C assert() macro. It is used in place of the

standard C assert() macro because not all the compilers that can be used to build FreeRTOS

provide an assert.h header file.

 335

configASSERT() should be defined in FreeRTOSConfig.h. Listing 243 shows an example

configASSERT() definition that assumed vAssertCalled() is defined elsewhere by the

application.

#define configASSERT((x)) if((x) == 0) vAssertCalled(__FILE__, __LINE__)

Listing 243 An example configASSERT() definition

configCHECK_FOR_STACK_OVERFLOW

Each task has a unique stack. If a task is created using the xTaskCreate() API function then

the stack is automatically allocated from the FreeRTOS heap, and the size of the stack is

specified by the xTaskCreate() usStackDepth parameter. If a task is created using the

xTaskCreateStatic() API function then the stack is pre-allocated by the application writer.

Stack overflow is a very common cause of application instability. FreeRTOS provides two

optional mechanisms that can be used to assist in stack overflow detection and debugging.

Which (if any) option is used is configured by the configCHECK_FOR_STACK_OVERFLOW

configuration constant.

If configCHECK_FOR_STACK_OVERFLOW is not set to 0 then the application must also

provide a stack overflow hook (or callback) function. The kernel will call the stack overflow

hook whenever a stack overflow is detected.

The stack overflow hook function must be called vApplicationStackOverflowHook(), and have

the prototype shown in Listing 244.

void vApplicationStackOverflowHook(TaskHandle_t *pxTask,
 signed char *pcTaskName);

Listing 244 The stack overflow hook function prototype

The name and handle of the task that has exceeded its stack space are passed into the stack

overflow hook function using the pcTaskName and pxTask parameters respectively. It should

be noted that a stack overflow can potentially corrupted these parameters, in which case the

pxCurrentTCB variable can be inspected to determine which task caused the stack overflow

hook function to be called.

336

Stack overflow checking can only be used on architectures that have a linear (rather than

segmented) memory map.

Some processors will generate a fault exception in response to a stack corruption before the

stack overflow callback function can be called.

Stack overflow checking increases the time taken to perform a context switch.

Stack overflow

detection method one

Method one is selected by setting

configCHECK_FOR_STACK_OVERFLOW to 1.

It is likely that task stack utilization will reach its maximum when the

task’s context is saved to the stack during a context switch. Stack

overflow detection method one checks the stack utilization at that time

to ensure the task stack pointer remains within the valid stack area.

The stack overflow hook function will be called if the stack pointer

contains an invalid value (a value that references memory outside of

the valid stack area).

Method one is quick, but will not necessarily catch all stack overflow

occurrences.

Stack overflow

detection method two

Method two is selected by setting

configCHECK_FOR_STACK_OVERFLOW to 2.

Method two includes the checks performed by method one. In

addition, method two will also verify that the limit of the valid stack

region has not been overwritten.

The stack allocated to a task is filled with a known pattern at the time

the task is created. Method two checks the last n bytes within the

valid stack range to ensure this pattern remains unmodified (has not

been overwritten). The stack overflow hook function is called if any of

these n bytes have changed from their original values.

Method two is less efficient than method one, but still fast. It will catch

most stack overflow occurrences, although it is conceivable that some

could be missed (for example, where a stack overflow occurs without

 337

the last n bytes being written to).

configCPU_CLOCK_HZ

This must be set to the frequency of the clock that drives the peripheral used to generate the

kernels periodic tick interrupt. This is very often, but not always, equal to the main system

clock frequency.

configSUPPORT_DYNAMIC_ALLOCATION

If configSUPPORT_DYNAMIC_ALLOCATION is set to 1 then RTOS objects can be created

using RAM that is automatically allocated from the FreeRTOS heap. If

configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then RTOS objects can only be created

using RAM provided by the application writer. See also

configSUPPORT_STATIC_ALLOCATION.

If configSUPPORT_DYNAMIC_ALLOCATION is not defined then it will default to 1.

configENABLE_BACKWARD_COMPATIBILITY

The FreeRTOS.h header file includes a set of #define macros that map the names of data

types used in versions of FreeRTOS prior to version 8.0.0 to the names used in FreeRTOS

version 8.0.0. The macros allow application code to update the version of FreeRTOS they are

built against from a pre 8.0.0 version to a post 8.0.0 version without modification. Setting

configENABLE_BACKWARD_COMPATIBILITY to 0 in FreeRTOSConfig.h excludes the

macros from the build, and in so doing allowing validation that no pre version 8.0.0 names are

being used.

configGENERATE_RUN_TIME_STATS

The task run time statistics feature collects information on the amount of processing time each

task is receiving. The feature requires the application to configure a run time statistics time

base. The frequency of the run time statistics time base must be at least ten times greater

than the frequency of the tick interrupt.

Setting configGENERATE_RUN_TIME_STATS to 1 will include the run time statistics

gathering functionality and associated API in the build. Setting

338

configGENERATE_RUN_TIME_STATS to 0 will exclude the run time statistics gathering

functionality and associated API from the build.

If configGENERATE_RUN_TIME_STATS is set to 1, then the application must also provide

definitions for the macros described in Table 2. If configGENERATE_RUN_TIME_STATS is

set to 0 then the application must not define any of the macros described in Table 2, otherwise

there is a risk that the application will not compiler and/or link.

Table 2. Additional macros that are required if
configGENERATE_RUN_TIME_STATS is set to 1

Macro Description

portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() This macro must be provided to

initialize whichever peripheral is

used to generate the run time

statistics time base.

portGET_RUN_TIME_COUNTER_VALUE(), or

portALT_GET_RUN_TIME_COUNTER_VALUE(Time)

One of these two macros must be

provided to return the current time

base value—this is the total time

that the application has been

running in the chosen time base

units. If the first macro is used it

must be defined to evaluate to the

current time base value. If the

second macro is used it must be

defined to set its ‘Time’ parameter to

the current time base value. (‘ALT’

in the macro name is an

abbreviation of ‘ALTernative’).

configIDLE_SHOULD_YIELD

configIDLE_SHOULD_YIELD controls the behavior of the idle task if there are application

tasks that also run at the idle priority. It only has an effect if the preemptive scheduler is being

used.

 339

Tasks that share a priority are scheduled using a round robin, time sliced, algorithm. Each

task will be selected in turn to enter the running state, but may not remain in the running state

for an entire tick period. For example, a task may be preempted, choose to yield, or choose to

enter the Blocked state before the next tick interrupt.

If configIDLE_SHOULD_YIELD is set to 0, then the idle task will never yield to another task,

and will only leave the Running state when it is pre-empted.

If configIDLE_SHOULD_YIELD is set to 1, then idle task will never perform more than one

iteration of its defined functionality without yielding to another task if there is another Idle

priority task that is in the Ready state. This ensures a minimum amount of time is spent in the

idle task when application tasks are available to run.

The Idle task consistently yielding to another Idle priority Ready state tasks has the side effect

shown in Figure 3.

Figure 3 Time line showing the execution of 4 tasks, all of which run at the idle

priority

Figure 3 shows the execution pattern of four tasks that all run at the idle priority. Tasks A, B

and C are application tasks. Task I is the idle task. The tick interrupt initiates a context switch

at regular intervals, shown at times T0, T1, T2, etc. It can be seen that the Idle task starts to

execute at time T2. It executes for part of a time slice, then yields to Task A. Task A executes

for the remainder of the same time slice, then gets pre-empted at time T3. Task I and task A

effectively share a single time slice, resulting in task B and task C consistently utilizing more

processing time than task A.

Setting configIDLE_SHOULD_YIELD to 0 prevents this behavior by ensuring the Idle task

remains in the Running state for an entire tick period (unless pre-empted by an interrupt other

than the tick interrupt). When this is the case, averaged over time, the other tasks that share

the idle priority will get an equal share of the processing time, but more time will also be spent

executing the idle task. Using an Idle task hook function can ensure the time spent executing

the Idle task is used productively.

340

configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS

configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS is only used by

FreeRTOS MPU.

If configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS is set to 1 then the

application writer must provide a header file called

"application_defined_privileged_functions.h", in which functions the application writer needs to

execute in privileged mode can be implemented. Note that, despite having a .h extension, the

header file should contain the implementation of the C functions, not just the functions'

prototypes.

Functions implemented in "application_defined_privileged_functions.h" must save and restore

the processor's privilege state using the prvRaisePrivilege() function and

portRESET_PRIVILEGE() macro respectively. For example, if a library provided print function

accesses RAM that is outside of the control of the application writer, and therefore cannot be

allocated to a memory protected user mode task, then the print function can be encapsulated

in a privileged function using the following code:

void MPU_debug_printf(const char *pcMessage)
{
State the privilege level of the processor when the function was called. */
BaseType_t xRunningPrivileged = prvRaisePrivilege();

 /* Call the library function, which now has access to all RAM. */
 debug_printf(pcMessage);

 /* Reset the processor privilege level to its original value. */
 portRESET_PRIVILEGE(xRunningPrivileged);
}

Listing 245 An example of saving and restoring the processors privilege state

This technique should only be use during development, and not deployment, as it circumvents

the memory protection.

configKERNEL_INTERRUPT_PRIORITY,
configMAX_SYSCALL_INTERRUPT_PRIORITY,
configMAX_API_CALL_INTERRUPT_PRIORITY

configMAX_API_CALL_INTERRUPT_PRIORITY is a new name for

configMAX_SYSCALL_INTERRUPT_PRIORITY that is used by newer ports only. The two are

equivalent.

 341

configKERNEL_INTERRUPT_PRIORITY and configMAX_SYSCALL_INTERRUPT_PRIORITY

are only relevant to ports that implement interrupt nesting.

If a port only implements the configKERNEL_INTERRUPT_PRIORITY configuration constant,

then configKERNEL_INTERRUPT_PRIORITY sets the priority of interrupts that are used by

the kernel itself. In this case, ISR safe FreeRTOS API functions (those that end in “FromISR”)

must not be called from any interrupt that has been assigned a priority above that set by

configKERNEL_INTERRUPT_PRIORITY. Interrupts that do not call API functions can execute

at higher priorities to ensure the interrupt timing, determinism and latency is not adversely

affected by anything the kernel is executing.

If a port implements both the configKERNEL_INTERRUPT_PRIORITY and the

configMAX_SYSCALL_INTERRUPT_PRIORITY configuration constants, then

configKERNEL_INTERRUPT_PRIORITY sets the interrupt priority of interrupts that are used

by the kernel itself, and configMAX_SYSCALL_INTERRUPT_PRIORITY sets the maximum

priority of interrupts from which ISR safe FreeRTOS API functions (those that end in

“FromISR”) can be called. A full interrupt nesting model is achieved by setting

configMAX_SYSCALL_INTERRUPT_PRIORITY above (that is, at a higher priority level) than

configKERNEL_INTERRUPT_PRIORITY. Interrupts that do not call API functions can execute

at priorities above configMAX_SYSCALL_INTERRUPT_PRIORITY to ensure the interrupt

timing, determinism and latency is not adversely affected by anything the kernel is executing.

As an example – imagine a hypothetical microcontroller that has seven interrupt priority levels.

In this hypothetical case, one is the lowest interrupt priority and seven is the highest interrupt

priority2. Figure 4 describes what can and cannot be done at each priority level when

configKERNEL_INTERRUPT_PRIORITY and configMAX_SYSCALL_INTERRUPT_PRIORITY

are set to one and three respectively.

2 Note care must be taken when assigning values to configKERNEL_INTERRUPT_PRIORITY and
configMAX_SYCALL_INTERRUPT_PRIORITY as some microcontrollers use zero or one to mean the
lowest priority, while others use zero or one to mean the highest priority.

342

Figure 4 An example interrupt priority configuration

ISRs running above the configMAX_SYSCALL_INTERRUPT_PRIORITY are never masked by

the kernel itself, so their responsiveness is not affected by the kernel functionality. This is

ideal for interrupts that require very high temporal accuracy – for example, interrupts that

perform motor commutation. However, interrupts that have a priority above

configMAX_SYSCALL_INTERRUPT_PRIORITY cannot call any FreeRTOS API functions,

even those that end in “FromISR” cannot be used.

configKERNEL_INTERRUPT_PRIORITY will nearly always, in not always, be set to the lowest

available interrupt priority.

configMAX_CO_ROUTINE_PRIORITIES

Sets the maximum priority that can be assigned to a co-routine. Co-routines can be assigned

a priority from zero, which is the lowest priority, to (configMAX_CO_ROUTINE_PRIORITIES –

1), which is the highest priority.

configMAX_PRIORITIES

Sets the maximum priority that can be assigned to a task. Tasks can be assigned a priority

from zero, which is the lowest priority, to (configMAX_PRIORITIES – 1), which is the highest

priority.

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

Priority 7

configMAX_SYSCALL_INTERRUPT_PRIORITY = 3
configKERNEL_INTERRUPT_PRIORITY = 1

ISRs using
these priorities
will never be
delayed by the
kernel

ISRs that make
API calls can
only use these
priorities and
will nest

ISRs that don’t
call any API

functions can
use any priority

and will nest

 343

configMAX_TASK_NAME_LEN

Sets the maximum number of characters that can be used for the name of a task. The NULL

terminator is included in the count of characters.

configMAX_SYSCALL_INTERRUPT_PRIORITY

See the description of the configKERNEL_INTERRUPT_PRIORITY configuration constant.

configMINIMAL_STACK_SIZE

Sets the size of the stack allocated to the Idle task. The value is specified in words, not bytes.

The kernel itself does not use configMINIMAL_STACK_SIZE for any other purpose, although

the constant is used extensively by the standard demo tasks.

A demo application is provided for every official FreeRTOS port. The value of

configMINIMAL_STACK_SIZE used in such a port specific demo application is the minimum

recommended stack size for any task created using that port.

configNUM_THREAD_LOCAL_STORAGE_POINTERS

Thread local storage (or TLS) allows the application writer to store values inside a task's

control block, making the value specific to (local to) the task itself, and allowing each task to

have its own unique value.

Each task has its own array of pointers that can be used as thread local storage. The number

of indexes in the array is set by configNUM_THREAD_LOCAL_STORAGE_POINTERS.

configQUEUE_REGISTRY_SIZE

Sets the maximum number of queues and semaphores that can be referenced from the queue

registry at any one time. Only queues and semaphores that need to be viewed in a kernel

aware debugging interface need to be registered.

The queue registry is only required when a kernel aware debugger is being used. At all other

times it has no purpose and can be omitted by setting configQUEUE_REGISTRY_SIZE to 0,

or by omitting the configQUEUE_REGISTRY_SIZE configuration constant definition

altogether.

344

configSUPPORT_STATIC_ALLOCATION

If configSUPPORT_STATIC_ALLOCATION is set to 1 then RTOS objects can be created

using RAM provided by the application writer. If configSUPPORT_STATIC_ALLOCATION is

set to 0 then RTOS objects can only be created using RAM allocated from the FreeRTOS

heap. See also configSUPPORT_DYNAMIC_ALLOCATION.

If configSUPPORT_STATIC_ALLOCATION is not defined then it will default to 0.

configTICK_RATE_HZ

Sets the tick interrupt frequency. The value is specified in Hz.

The pdMS_TO_TICKS() macro can be used to convert a time specified in milliseconds to a

time specified in ticks. Block times specified this way will remain constant even when the

configTICK_RATE_HZ definition is changed. pdMS_TO_TICKS() can only be used when

configTICK_RATE_HZ is less than or equal to 1000. The standard demo tasks make

extensive use of pdMS_TO_TICKS(), so they too can only be used when

configTICK_RATE_HZ is less than or equal to 1000.

configTIMER_QUEUE_LENGTH

Timer functionality is not provided by the core FreeRTOS code, but by a timer service (or

daemon) task. The FreeRTOS timer API sends commands to the timer service task on a

queue called the timer command queue. configTIMER_QUEUE_LENGTH sets the maximum

number of unprocessed commands that the timer command queue can hold at any one time.

Reasons the timer command queue might fill up include:

• Multiple timer API function calls being made before the scheduler has been started, and

therefore before the timer service task has been created.

• Multiple (interrupt safe) timer API function calls being made from an interrupt service

routine (ISR), and therefore not allowing the timer service task to process the

commands.

• Multiple timer API function calls being made from a task that has a priority above that of

the timer service task.

 345

configTIMER_TASK_PRIORITY

Timer functionality is not provided by the core FreeRTOS code, but by a timer service (or

daemon) task. The FreeRTOS timer API sends commands to the timer service task on a

queue called the timer command queue. configTIMER_TASK_PRIORITY sets the priority of

the timer service task. Like all tasks, the timer service task can run at any priority between 0

and (configMAX_PRIORITIES - 1).

This value needs to be chosen carefully to meet the requirements of the application. For

example, if the timer service task is made the highest priority task in the system, then

commands sent to the timer service task (when a timer API function is called), and expired

timers, will both get processed immediately. Conversely, if the timer service task is given a

low priority, then commands sent to the timer service task, and expired timers, will not be

processed until the timer service task is the highest priority task that is able to run. It is worth

noting however, that timer expiry times are calculated relative to when a command is sent, and

not relative to when a command is processed.

configTIMER_TASK_STACK_DEPTH

Timer functionality is not provided by the core FreeRTOS code, but by a timer service (or

daemon) task. The FreeRTOS timer API sends commands to the timer service task on a

queue called the timer command queue. configTIMER_TASK_STACK_DEPTH sets the size

of the stack (in words, not bytes) allocated to the timer service task.

Timer callback functions execute in the context of the timer service task. The stack

requirement of the timer service task therefore depends on the stack requirements of the timer

callback functions.

configTOTAL_HEAP_SIZE

The kernel allocates memory from the heap each time a task, queue or semaphore is created.

The official FreeRTOS download includes three sample memory allocation schemes for this

purpose. The schemes are implemented in the heap_1.c, heap_2.c, heap_3.c and heap_4.c

source files respectively. The schemes defined by heap_1.c, heap_2.c and heap_4.c allocate

memory from a statically allocated array, known as the FreeRTOS heap.

configTOTAL_HEAP_SIZE sets the size of this array. The size is specified in bytes.

346

The configTOTAL_HEAP_SIZE setting has no effect unless heap_1.c, heap_2.c or heap_4.c

are being used by the application.

configUSE_16_BIT_TICKS

The tick count is held in a variable of type TickType_t. When configUSE_16_BIT_TICKS is set

to 1, TickType_t is defined to be an unsigned 16-bit type. When configUSE_16_BIT_TICKS is

set to 0, TickType_t is defined to be an unsigned 32-bit type.

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit microcontrollers, but at

the cost of limiting the maximum block time that can be specified.

configUSE_ALTERNATIVE_API

Two sets of API functions are provided to send to, and receive from, queues – the standard

API and the ‘alternative’ API. Only the standard API is documented in this manual. Use of the

alternative API is no longer recommended.

Setting configUSE_ALTERNATIVE_API to 1 will include the alternative API functions in the

build. Setting configUSE_ALTERNATIVE_API to 0 will exclude the alternative API functions

from the build.

Note: Use of the alternative API is deprecated and therefore not recommended.

configUSE_APPLICATION_TASK_TAG

Setting configUSE_APPLICATION_TASK_TAG to 1 will include both the

vTaskSetApplicationTaskTag() and xTaskCallApplicationTaskHook() API functions in the build.

Setting configUSE_APPLICATION_TASK_TAG to 0 will exclude both the

vTaskSetApplicationTaskTag() and the xTaskCallApplicationTaskHook() API functions from

the build.

configUSE_CO_ROUTINES

Co-routines are light weight tasks that save RAM by sharing a stack, but have limited

functionality. Their use is omitted from this manual.

 347

Setting configUSE_CO_ROUTINES to 1 will include all co-routine functionality and its

associated API functions in the build. Setting configUSE_CO_ROUTINES to 0 will exclude all

co-routine functionality and its associated API functions from the build.

configUSE_COUNTING_SEMAPHORES

Setting configUSE_COUNTING_SEMAPHORES to 1 will include the counting semaphore

functionality and its associated API in the build. Setting

configUSE_COUNTING_SEMAPHORES to 0 will exclude the counting semaphore

functionality and its associated API from the build.

configUSE_DAEMON_TASK_STARTUP_HOOK

If configUSE_TIMERS and configUSE_DAEMON_TASK_STARTUP_HOOK are both set to 1

then the application must define a hook function that has the exact name and prototype as

shown in Listing 246. The hook function will be called exactly once when the RTOS daemon

task (also known as the timer service) executes for the first time. Any application initialization

code that needs the RTOS to be running can be placed in the hook function.

void vApplicationDaemonTaskStartupHook(void);

Listing 246 The daemon task startup hook function name and prototype.

configUSE_IDLE_HOOK

The idle task hook function is a hook (or callback) function that, if defined and configured, will

be called by the Idle task on each iteration of its implementation.

If configUSE_IDLE_HOOK is set to 1 then the application must define an idle task hook

function. If configUSE_IDLE_HOOK is set to 0 then the idle task hook function will not be

called, even if one is defined.

Idle task hook functions must have the name and prototype shown in Listing 247.

void vApplicationIdleHook(void);

Listing 247 The idle task hook function name and prototype.

348

configUSE_MALLOC_FAILED_HOOK

The kernel uses a call to pvPortMalloc() to allocate memory from the heap each time a task,

queue or semaphore is created. The official FreeRTOS download includes three sample

memory allocation schemes for this purpose. The schemes are implemented in the heap_1.c,

heap_2.c heap_3.c and heap_4.c source files respectively.

configUSE_MALLOC_FAILED_HOOK is only relevant when one of these three sample

schemes is being used.

The malloc() failed hook function is a hook (or callback) function that, if defined and

configured, will be called if pvPortMalloc() ever returns NULL. NULL will be returned only if

there is insufficient FreeRTOS heap memory remaining for the requested allocation to

succeed.

If configUSE_MALLOC_FAILED_HOOK is set to 1 then the application must define a malloc()

failed hook function. If configUSE_MALLOC_FAILED_HOOK is set to 0 then the malloc()

failed hook function will not be called, even if one is defined.

Malloc() failed hook functions must have the name and prototype shown in Listing 248.

void vApplicationMallocFailedHook(void);

Listing 248 The malloc() failed hook function name and prototype.

configUSE_MUTEXES

Setting configUSE_MUTEXES to 1 will include the mutex functionality and its associated API

in the build. Setting configUSE_MUTEXES to 0 will exclude the mutex functionality and its

associated API from the build.

configUSE_NEWLIB_REENTRANT

If configUSE_NEWLIB_REENTRANT is set to 1 then a newlib reent structure will be allocated

for each created task.

Note Newlib support has been included by popular demand, but is not used by the FreeRTOS

maintainers themselves. FreeRTOS is not responsible for resulting newlib operation. User

must be familiar with newlib and must provide system-wide implementations of the necessary

http://sourceware.org/newlib/

 349

stubs. Be warned that (at the time of writing) the current newlib design implements a system-

wide malloc() that must be provided with locks.

configUSE_PORT_OPTIMISED_TASK_SELECTION

Some FreeRTOS ports have two methods of selecting the next task to execute – a generic

method, and a method that is specific to that port.

The Generic method:

• Is used when configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 0, or when

a port specific method is not implemented.

• Can be used with all FreeRTOS ports.

• Is completely written in C, making it less efficient than a port specific method.

• Does not impose a limit on the maximum number of available priorities.

A port specific method:

• Is not available for all ports.

• Is used when configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 1.

• Relies on one or more architecture specific assembly instructions (typically a Count

Leading Zeros [CLZ] of equivalent instruction) so can only be used with the architecture

for which it was specifically written.

• Is more efficient than the generic method.

• Typically imposes a limit of 32 on the maximum number of available priorities.

configUSE_PREEMPTION

Setting configUSE_PREEMPTION to 1 will cause the pre-emptive scheduler to be used.

Setting configUSE_PREEMPTION to 0 will cause the co-operative scheduler to be used.

When the pre-emptive scheduler is used the kernel will execute during each tick interrupt,

which can result in a context switch occurring in the tick interrupt.

350

When the co-operative scheduler is used a context switch will only occur when either:

1. A task explicitly calls taskYIELD().

2. A task explicitly calls an API function that results in it entering the Blocked state.

3. An application defined interrupt explicitly performs a context switch.

configUSE_QUEUE_SETS

Setting configUSE_QUEUE_SETS to 1 will include queue set functionality (the ability to block

on multiple queues at the same time) and its associated API in the build. Setting

configUSE_QUEUE_SETS to 0 will exclude queue set functionality and its associated API

from the build.

configUSE_RECURSIVE_MUTEXES

Setting configUSE_RECURSIVE_MUTEXES to 1 will cause the recursive mutex functionality

and its associated API to be included in the build. Setting

configUSE_RECURSIVE_MUTEXES to 0 will cause the recursive mutex functionality and its

associated API to be excluded from the build.

configUSE_STATS_FORMATTING_FUNCTIONS

Set configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS to 1

to include the vTaskList() and vTaskGetRunTimeStats().

functions in the build. Setting either to 0 will omit vTaskList() and vTaskGetRunTimeStates()

from the build.

configUSE_TASK_NOTIFICATIONS

Setting configUSE_TASK_NOTIFICATIONS to 1 (or leaving

configUSE_TASK_NOTIFICATIONS undefined) will include direct to task notification

functionality and its associated API in the build. Setting configUSE_TASK_NOTIFICATIONS

to 0 will exclude direct to task notification functionality and its associated API from the build.

Each task consumes 8 additional bytes of RAM when direct to task notifications are included in

the build.

 351

configUSE_TICK_HOOK

The tick hook function is a hook (or callback) function that, if defined and configured, will be

called during each tick interrupt.

If configUSE_TICK_HOOK is set to 1 then the application must define a tick hook function. If

configUSE_TICK_HOOK is set to 0 then the tick hook function will not be called, even if one is

defined.

Tick hook functions must have the name and prototype shown in Listing 249.

void vApplicationTickHook(void);

Listing 249 The tick hook function name and prototype.

configUSE_TICKLESS_IDLE

Set configUSE_TICKLESS_IDLE to 1 to use the low power tickless mode, or 0 to keep the tick

interrupt running at all times. Low power tickless implementations are not provided for all

FreeRTOS ports.

configUSE_TIMERS

Setting configUSE_TIMERS to 1 will include software timer functionality and its associated API

in the build. Setting configUSE_TIMERS to 0 will exclude software timer functionality and its

associated API from the build.

If configUSE_TIMERS is set to 1, then configTIMER_TASK_PRIORITY,

configTIMER_QUEUE_LENGTH and configTIMER_TASK_STACK_DEPTH must also be

defined.

configUSE_TIME_SLICING

By default (if configUSE_TIME_SLICING is not defined, or if configUSE_TIME_SLICING is

defined as 1) FreeRTOS uses prioritized preemptive scheduling with time slicing. That means

the RTOS scheduler will always run the highest priority task that is in the Ready state, and will

switch between tasks of equal priority on every RTOS tick interrupt. If

configUSE_TIME_SLICING is set to 0 then the RTOS scheduler will still run the highest priority

352

task that is in the Ready state, but will not switch between tasks of equal priority just because

a tick interrupt executed.

configUSE_TRACE_FACILITY

Setting configUSE_TRACE_FACILITY to 1 will result in additional structure members and

functions that assist with execution visualization and tracing being included in the build.

 353

Chapter 8

Stream Buffer API

354

8.1 xStreamBufferBytesAvailable()

#include “FreeRTOS.h”
#include “stream_buffer.h”

size_t xStreamBufferBytesAvailable(StreamBufferHandle_t xStreamBuffer);

Listing 250 size_t xStreamBufferBytesAvailable() function prototype

Summary

Queries a stream buffer to see how much data it contains, which is equal to the number of

bytes that can be read from the stream buffer before the stream buffer would be empty.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer being queried.

Return Values

The number of bytes that can be read from the stream buffer before the stream buffer would

be emtpy.

 355

8.2 xStreamBufferCreate()

#include “FreeRTOS.h”
#include “stream_buffer.h”

StreamBufferHandle_t xStreamBufferCreate(size_t xBufferSizeBytes,
 size_t xTriggerLevelBytes);

Listing 251 xStreamBufferCreate() function prototype

Summary

Creates a new stream buffer using dynamically allocated memory. See

xStreamBufferCreateStatic() for a version that uses statically allocated memory (memory that

is allocated at compile time).

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in

FreeRTOSConfig.h for xStreamBufferCreate() to be available.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xBufferSizeBytes The total number of bytes the stream buffer will be able to hold at any

one time.

xTriggerLevelBytes The number of bytes that must be in the stream buffer before a task that

is blocked on the stream buffer to wait for data is moved out of the

blocked state. For example, if a task is blocked on a read of an empty

stream buffer that has a trigger level of 1 then the task will be unblocked

when a single byte is written to the buffer or the task's block time expires.

As another example, if a task is blocked on a read of an empty stream

buffer that has a trigger level of 10 then the task will not be unblocked

until the stream buffer contains at least 10 bytes or the task's block time

expires. If a reading task's block time expires before the trigger level is

reached then the task will still receive however many bytes are actually

available. Setting a trigger level of 0 will result in a trigger level of 1 being

used. It is not valid to specify a trigger level that is greater than the buffer

356

size.

Return Values

If NULL is returned, then the stream buffer cannot be created because there is insufficient

heap memory available for FreeRTOS to allocate the stream buffer data structures and

storage area. A non-NULL value being returned indicates that the stream buffer has been

created successfully - the returned value should be stored as the handle to the created stream

buffer.

Example

void vAFunction(void)
{
StreamBufferHandle_t xStreamBuffer;
const size_t xStreamBufferSizeBytes = 100, xTriggerLevel = 10;

 /* Create a stream buffer that can hold 100 bytes. The memory used to hold
 both the stream buffer structure and the data in the stream buffer is
 allocated dynamically. */
 xStreamBuffer = xStreamBufferCreate(xStreamBufferSizeBytes, xTriggerLevel);

 if(xStreamBuffer == NULL)
 {
 /* There was not enough heap memory space available to create the
 stream buffer. */
 }
 else
 {
 /* The stream buffer was created successfully and can now be used. */
 }
}

Listing 252 Example use of xStreamBufferCreate()

 357

8.3 xStreamBufferCreateStatic()

#include “FreeRTOS.h”
#include “stream_buffer.h”

StreamBufferHandle_t xStreamBufferCreateStatic(
 size_t xBufferSizeBytes,
 size_t xTriggerLevelBytes,
 uint8_t *pucStreamBufferStorageArea,
 StaticStreamBuffer_t *pxStaticStreamBuffer);

Listing 253 xStreamBufferCreateStatic() function prototype

Summary

Creates a new stream buffer using statically allocated memory. See xStreamBufferCreate() for

a version that uses dynamically allocated memory.

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for

xStreamBufferCreateStatic() to be available.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build

Parameters

xBufferSizeBytes The size, in bytes, of the buffer pointed to by the

pucStreamBufferStorageArea parameter.

xTriggerLevelBytes The number of bytes that must be in the stream buffer before

a task that is blocked on the stream buffer to wait for data is

moved out of the blocked state. For example, if a task is

blocked on a read of an empty stream buffer that has a trigger

level of 1 then the task will be unblocked when a single byte

is written to the buffer or the task's block time expires. As

another example, if a task is blocked on a read of an empty

stream buffer that has a trigger level of 10 then the task will

not be unblocked until the stream buffer contains at least 10

bytes or the task's block time expires. If a reading task's block

time expires before the trigger level is reached then the task

will still receive however many bytes are actually available.

358

Setting a trigger level of 0 will result in a trigger level of 1

being used. It is not valid to specify a trigger level that is

greater than the buffer size.

pucStreamBufferStorageArea

Must point to a uint8_t array that is at least xBufferSizeBytes

+ 1 big. This is the array to which streams are copied when

they are written to the stream buffer.

pxStaticStreamBuffer Must point to a variable of type StaticStreamBuffer_t, which

will be used to hold the stream buffer's data structure.

Return Values

If the stream buffer is created successfully then a handle to the created stream buffer is

returned. If either pucStreamBufferStorageArea or pxStaticstreamBuffer are NULL then NULL

is returned.

Example

/* Used to dimension the array used to hold the streams. The available space
will actually be one less than this, so 999. */
#define STORAGE_SIZE_BYTES 1000

/* Defines the memory that will actually hold the streams within the stream
buffer. */
static uint8_t ucStorageBuffer[STORAGE_SIZE_BYTES];

/* The variable used to hold the stream buffer structure. */
StaticStreamBuffer_t xStreamBufferStruct;

void MyFunction(void)
{
StreamBufferHandle_t xStreamBuffer;
const size_t xTriggerLevel = 1;

 xStreamBuffer = xStreamBufferCreateStatic(sizeof(ucBufferStorage),
 xTriggerLevel,
 ucBufferStorage,
 &xStreamBufferStruct);

 /* As neither the pucStreamBufferStorageArea or pxStaticStreamBuffer
 parameters were NULL, xStreamBuffer will not be NULL, and can be used to
 reference the created stream buffer in other stream buffer API calls. */

 /* Other code that uses the stream buffer can go here. */
}

Listing 254 Example use of xStreamBufferCreateStatic()

 359

8.4 vStreamBufferDelete()

#include “FreeRTOS.h”
#include “stream_buffer.h”

void vStreamBufferDelete(StreamBufferHandle_t xStreamBuffer);

Listing 255 vStreamBufferDelete() function prototype

Summary

Deletes a stream buffer that was previously created using a call to xStreamBufferCreate() or

xStreamBufferCreateStatic(). If the stream buffer was created using dynamic memory (that is,

by xStreamBufferCreate()), then the allocated memory is freed.

A stream buffer handle must not be used after the stream buffer has been deleted.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer to be deleted.

360

8.5 xStreamBufferIsEmpty()

#include “FreeRTOS.h”
#include “stream_buffer.h”

BaseType_t xStreamBufferIsEmpty(StreamBufferHandle_t xStreamBuffer);

Listing 256 xStreamBufferIsEmpty() function prototype

Summary

Queries a stream buffer to see if it is empty. A stream buffer is empty if it does not contain any

data.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer being queried.

Return Values

If the stream buffer is empty then pdTRUE is returned. Otherwise pdFALSE is returned.

 361

8.6 xStreamBufferIsFull()

#include “FreeRTOS.h”
#include “stream_buffer.h”

BaseType_t xStreamBufferIsFull(StreamBufferHandle_t xStreamBuffer);

Listing 257 xStreamBufferIsFull() function prototype

Summary

Queries a stream buffer to see if it is full. A stream buffer is full if it does not have any free

space, and therefore cannot accept any more data.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer being queried.

Return Values

If the stream buffer is full then pdTRUE is returned. Otherwise pdFALSE is returned.

362

8.7 xStreamBufferReceive()

#include “FreeRTOS.h”
#include “stream_buffer.h”

size_t xStreamBufferReceive(StreamBufferHandle_t xStreamBuffer,
 void *pvRxData,
 size_t xBufferLengthBytes,
 TickType_t xTicksToWait);

Listing 258 xStreamBufferReceive() function prototype

Summary

Receives bytes from a stream buffer.

Parameters

xStreamBuffer The handle of the stream buffer from which bytes are to be received.

pvRxData A pointer to the buffer into which the received bytes will be copied.

xBufferLengthBytes The length of the buffer pointed to by the pvRxData parameter. This sets

the maximum number of bytes to receive in one call.

xStreamBufferReceive will return as many bytes as possible up to a

maximum set by xBufferLengthBytes.

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for data to become available if the stream buffer is empty.

xStreamBufferReceive() will return immediately if xTicksToWait is zero.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks. Setting xTicksToWait to

portMAX_DELAY will cause the task to wait indefinitely (without timing

out), provided INCLUDE_vTaskSuspend is set to 1 in

FreeRTOSConfig.h. A task does not use any CPU time when it is in the

Blocked state.

Return Values

 363

The number of bytes actually read from the stream buffer, which will be less than

xBufferLengthBytes if the call to xStreamBufferReceive() timed out before xBufferLengthBytes

were available.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as xStreamBufferSend())

inside a critical section and use a send block time of 0. Likewise, if there are to be multiple

different readers then the application writer must place each call to a reading API function

(such as xStreamBufferRead()) inside a critical section and use a receive block time of 0.

Use xStreamBufferReceive() to read from a stream buffer from a task. Use

xStreamBufferReceiveFromISR() to read from a stream buffer from an interrupt service routine

(ISR).

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

364

Example

void vAFunction(StreamBuffer_t xStreamBuffer)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
const TickType_t xBlockTime = pdMS_TO_TICKS(20);

 /* Receive up to another sizeof(ucRxData) bytes from the stream buffer.
 Wait in the Blocked state (so not using any CPU processing time) for a
 maximum of 100ms for the full sizeof(ucRxData) number of bytes to be
 available. */
 xReceivedBytes = xStreamBufferReceive(xStreamBuffer,
 (void *) ucRxData,
 sizeof(ucRxData),
 xBlockTime);

 if(xReceivedBytes > 0)
 {
 /* A ucRxData contains another xRecievedBytes bytes of data, which can
 be processed here.... */
 }
}

Listing 259 Example use of xStreamBufferReceive()

 365

8.8 xStreamBufferReceiveFromISR()

#include “FreeRTOS.h”
#include “stream_buffer.h”

size_t xStreamBufferReceiveFromISR(StreamBufferHandle_t xStreamBuffer,
 void *pvRxData,
 size_t xBufferLengthBytes,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 260 xStreamBufferReceiveFromISR() function prototype

Summary

An interrupt safe version of the API function that receives bytes from a stream buffer.

Parameters

xStreamBuffer The handle of the stream buffer from which bytes are to be

received.

pvRxData A pointer to the buffer into which the received bytes will be

copied.

xBufferLengthBytes The length of the buffer pointed to by the pvRxData parameter.

This sets the maximum number of bytes to receive in one call.

xStreamBufferReceive will return as many bytes as possible up

to a maximum set by xBufferLengthBytes.

pxHigherPriorityTaskWoken It is possible that a stream buffer will have a task blocked on it

waiting for space to become available. Calling

xStreamBufferReceiveFromISR() can make space available,

and so cause a task that is waiting for space to leave the

Blocked state. If calling xStreamBufferReceiveFromISR()

causes a task to leave the Blocked state, and the unblocked

task has a priority higher than the currently executing task (the

task that was interrupted), then, internally,

xStreamBufferReceiveFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE. If

xStreamBufferReceiveFromISR() sets this value to pdTRUE,

366

then normally a context switch should be performed before the

interrupt is exited. That will ensure the interrupt returns directly

to the highest priority Ready state task.

*pxHigherPriorityTaskWoken should be set to pdFALSE before

it is passed into the function. See the code example below for

an example.

Return Values

The number of bytes read from the stream buffer, if any.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as xStreamBufferSend())

inside a critical section and use a send block time of 0. Likewise, if there are to be multiple

different readers then the application writer must place each call to a reading API function

(such as xStreamBufferRead()) inside a critical section and use a receive block time of 0.

Use xStreamBufferReceive() to read from a stream buffer from a task. Use

xStreamBufferReceiveFromISR() to read from a stream buffer from an interrupt service routine

(ISR).

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

 367

Example

/* A stream buffer that has already been created. */
StreamBuffer_t xStreamBuffer;

void vAnInterruptServiceRoutine(void)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
BaseType_t xHigherPriorityTaskWoken = pdFALSE; /* Initialised to pdFALSE. */

 /* Receive the next stream from the stream buffer. */
 xReceivedBytes = xStreamBufferReceiveFromISR(xStreamBuffer,
 (void *) ucRxData,
 sizeof(ucRxData),
 &xHigherPriorityTaskWoken);

 if(xReceivedBytes > 0)
 {
 /* ucRxData contains xReceivedBytes read from the stream buffer.
 Process the stream here.... */
 }

 /* If xHigherPriorityTaskWoken was set to pdTRUE inside
 xStreamBufferReceiveFromISR() then a task that has a priority above the
 priority of the currently executing task was unblocked and a context
 switch should be performed to ensure the ISR returns to the unblocked
 task. In most FreeRTOS ports this is done by simply passing
 xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
 variables value, and perform the context switch if necessary. Check the
 documentation for the port in use for port specific instructions. */
 taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 261 Example use of xStreamBufferReceiveFromISR()

368

8.9 xStreamBufferReset()

#include “FreeRTOS.h”
#include “stream_buffer.h”

BaseType_t xStreamBufferReset(StreamBufferHandle_t xStreamBuffer);

Listing 262 xStreamBufferReset() function prototype

Summary

Resets a stream buffer to its initial, empty, state. Any data that was in the stream buffer is

discarded. A stream buffer can only be reset if there are no tasks blocked waiting to either

send to or receive from the stream buffer.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer being reset.

Return Values

If the stream buffer is reset then pdPASS is returned. If there was a task blocked waiting to

send to or read from the stream buffer then the stream buffer will not be reset and pdFAIL is

returned.

 369

8.10 xStreamBufferSend()

#include “FreeRTOS.h”
#include “stream_buffer.h”

size_t xStreamBufferSend(StreamBufferHandle_t xStreamBuffer,
 const void *pvTxData,
 size_t xDataLengthBytes,
 TickType_t xTicksToWait);

Listing 263 xStreamBufferSend() function prototype

Summary

Sends bytes to a stream buffer. The bytes are copied into the stream buffer.

Parameters

xStreamBuffer The handle of the stream buffer to which a stream is being sent.

pvTxData A pointer to the buffer that holds the bytes to be copied into the stream

buffer

xDataLengthBytes The maximum number of bytes to copy from pvTxData into the stream

buffer.

xTicksToWait The maximum amount of time the task should remain in the Blocked state

to wait for enough space to become available in the stream buffer, should

the stream buffer contain too little space to hold the another

xDataLengthBytes bytes. The block time is specified in tick periods, so

the absolute time it represents is dependent on the tick frequency. The

macro pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks. Setting xTicksToWait to

portMAX_DELAY will cause the task to wait indefinitely (without timing

out), provided INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.

If a task times out before it can write all xDataLengthBytes into the buffer

it will still write as many bytes as possible. A task does not use any CPU

time when it is in the blocked state.

Return Values

370

The number of bytes written to the stream buffer. If a task times out before it can write all

xDataLengthBytes into the buffer it will still write as many bytes as possible.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as xStreamBufferSend())

inside a critical section and use a send block time of 0. Likewise, if there are to be multiple

different readers then the application writer must place each call to a reading API function

(such as xStreamBufferRead()) inside a critical section and use a receive block time of 0.

Use xStreamBufferSend() to write to a stream buffer from a task. Use

xStreamBufferSendFromISR() to write to a stream buffer from an interrupt service routine

(ISR).

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

 371

Example

void vAFunction(StreamBufferHandle_t xStreamBuffer)
{
size_t xBytesSent;
uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
char *pcStringToSend = "String to send";
const TickType_t x100ms = pdMS_TO_TICKS(100);

 /* Send an array to the stream buffer, blocking for a maximum of 100ms to
 wait for enough space to be available in the stream buffer. */
 xBytesSent = xStreamBufferSend(xStreamBuffer,
 (void *) ucArrayToSend,
 sizeof(ucArrayToSend),
 x100ms);

 if(xBytesSent != sizeof(ucArrayToSend))
 {
 /* The call to xStreamBufferSend() times out before there was enough
 space in the buffer for the data to be written, but it did
 successfully write xBytesSent bytes. */
 }

 /* Send the string to the stream buffer. Return immediately if there is not
 enough space in the buffer. */
 xBytesSent = xStreamBufferSend(xStreamBuffer,
 (void *) pcStringToSend,
 strlen(pcStringToSend), 0);

 if(xBytesSent != strlen(pcStringToSend))
 {
 /* The entire string could not be added to the stream buffer because
 there was not enough free space in the buffer, but xBytesSent bytes
 were sent. Could try again to send the remaining bytes. */
 }
}

Listing 264 Example use of xStreamBufferSend()

372

8.11 xStreamBufferSendFromISR()

#include “FreeRTOS.h”
#include “stream_buffer.h”

size_t xStreamBufferSendFromISR(StreamBufferHandle_t xStreamBuffer,
 const void *pvTxData,
 size_t xDataLengthBytes,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 265 xStreamBufferSendFromISR() function prototype

Summary

Interrupt safe version of the API function that sends a stream of bytes to the stream buffer.

Parameters

xStreamBuffer The handle of the stream buffer to which a stream is being sent.

pvTxData A pointer to the buffer that holds the bytes to be copied into the

stream buffer.

xDataLengthBytes The maximum number of bytes to copy from pvTxData into the

stream buffer.

pxHigherPriorityTaskWoken It is possible that a stream buffer will have a task blocked on it

waiting for data. Calling xStreamBufferSendFromISR() can

make data available, and so cause a task that was waiting for

data to leave the Blocked state. If calling

xStreamBufferSendFromISR() causes a task to leave the

Blocked state, and the unblocked task has a priority higher than

the currently executing task (the task that was interrupted), then,

internally, xStreamBufferSendFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE. If

xStreamBufferSendFromISR() sets this value to pdTRUE, then

normally a context switch should be performed before the

interrupt is exited. This will ensure that the interrupt returns

directly to the highest priority Ready state task.

*pxHigherPriorityTaskWoken should be set to pdFALSE before

 373

it is passed into the function. See the example code below for

an example.

Return Values

The number of bytes written to the stream buffer. If a task times out before it can write all

xDataLengthBytes into the buffer it will still write as many bytes as possible.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as xStreamBufferSend())

inside a critical section and use a send block time of 0. Likewise, if there are to be multiple

different readers then the application writer must place each call to a reading API function

(such as xStreamBufferRead()) inside a critical section and use a receive block time of 0.

Use xStreamBufferSend() to write to a stream buffer from a task. Use

xStreamBufferSendFromISR() to write to a stream buffer from an interrupt service routine

(ISR).

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

374

Example

/* A stream buffer that has already been created. */
StreamBufferHandle_t xStreamBuffer;

void vAnInterruptServiceRoutine(void)
{
size_t xBytesSent;
char *pcStringToSend = "String to send";
BaseType_t xHigherPriorityTaskWoken = pdFALSE; /* Initialised to pdFALSE. */

 /* Attempt to send the string to the stream buffer. */
 xBytesSent = xStreamBufferSendFromISR(xStreamBuffer,
 (void *) pcStringToSend,
 strlen(pcStringToSend),
 &xHigherPriorityTaskWoken);

 if(xBytesSent != strlen(pcStringToSend))
 {
 /* There was not enough free space in the stream buffer for the entire
 string to be written, ut xBytesSent bytes were written. */
 }

 /* If xHigherPriorityTaskWoken was set to pdTRUE inside
 xStreamBufferSendFromISR() then a task that has a priority above the
 priority of the currently executing task was unblocked and a context
 switch should be performed to ensure the ISR returns to the unblocked
 task. In most FreeRTOS ports this is done by simply passing
 xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
 variables value, and perform the context switch if necessary. Check the
 documentation for the port in use for port specific instructions. */
 taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 266 Example use of xStreamBufferSendFromISR()

 375

8.12 xStreamBufferSetTriggerLevel()

#include “FreeRTOS.h”
#include “stream_buffer.h”

BaseType_t xStreamBufferSetTriggerLevel(StreamBufferHandle_t xStreamBuffer,
 size_t xTriggerLevel);

Listing 267 xStreamBufferSetTriggerLevel() function prototype

Summary

A stream buffer's trigger level is the number of bytes that must be in the stream buffer before a

task that is blocked on the stream buffer to wait for data is moved out of the blocked state. For

example, if a task is blocked on a read of an empty stream buffer that has a trigger level of 1

then the task will be unblocked when a single byte is written to the buffer or the task's block

time expires. As another example, if a task is blocked on a read of an empty stream buffer that

has a trigger level of 10 then the task will not be unblocked until the stream buffer contains at

least 10 bytes or the task's block time expires. If a reading task's block time expires before the

trigger level is reached then the task will still receive however many bytes are actually

available. Setting a trigger level of 0 will result in a trigger level of 1 being used. It is not valid

to specify a trigger level that is greater than the buffer size.

A trigger level is set when the stream buffer is created, and can be modified using

xStreamBufferSetTriggerLevel().

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer being updated.

xTriggerLevel The new trigger level for the stream buffer.

Return Values

If xTriggerLevel was less than or equal to the steam buffer's length then the trigger level will be

updated and pdTRUE is returned. Otherwise pdFALSE is returned.

376

8.13 xStreamBufferSpacesAvailable()

#include “FreeRTOS.h”
#include “stream_buffer.h”

size_t xStreamBufferSpacesAvailable(StreamBufferHandle_t xStreamBuffer);

Listing 268 xStreamBufferSpacesAvailable() function prototype

Summary

Queries a stream buffer to see how much free space it contains, which is equal to the amount

of data that can be sent to the stream buffer before it is full.

Stream buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build.

Parameters

xStreamBuffer The handle of the stream buffer being queried.

Return Values

The number of bytes that can be written to the stream buffer before the stream buffer would be

full.

 377

Chapter 9

Message Buffer API

378

9.1 xMessageBufferCreate()

#include “FreeRTOS.h”
#include “message_buffer.h”

MessageBufferHandle_t xMessageBufferCreate(size_t xBufferSizeBytes);

Listing 269 xMessageBufferCreate() function prototype

Summary

Creates a new message buffer using dynamically allocated memory. See

xMessageBufferCreateStatic() for a version that uses statically allocated memory (memory

that is allocated at compile time).

configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in

FreeRTOSConfig.h for xMessageBufferCreate() to be available.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xBufferSizeBytes The total number of bytes (not messages) the message buffer will be able

to hold at any one time. When a message is written to the message buffer

an additional sizeof(size_t) bytes are also written to store the message's

length. sizeof(size_t) is typically 4 bytes on a 32-bit architecture, so on

most 32-bit architectures a 10 byte message will take up 14 bytes of

message buffer space.

Return Values

If NULL is returned, then the message buffer cannot be created because there is insufficient

heap memory available for FreeRTOS to allocate the message buffer data structures and

storage area. A non-NULL value being returned indicates that the message buffer has been

created successfully - the returned value should be stored as the handle to the created

message buffer.

 379

Example

void vAFunction(void)
{
MessageBufferHandle_t xMessageBuffer;
const size_t xMessageBufferSizeBytes = 100;

 /* Create a message buffer that can hold 100 bytes. The memory used to hold
 both the message buffer structure and the data in the message buffer is
 allocated dynamically. */
 xMessageBuffer = xMessageBufferCreate(xMessageBufferSizeBytes);

 if(xMessageBuffer == NULL)
 {
 /* There was not enough heap memory space available to create the
 message buffer. */
 }
 else
 {
 /* The message buffer was created successfully and can now be used. */
 }
}

Listing 270 Example use of xMessageBufferCreate()

380

9.2 xMessageBufferCreateStatic()

#include “FreeRTOS.h”
#include “message_buffer.h”

MessageBufferHandle_t xMessageBufferCreateStatic(
 size_t xBufferSizeBytes,
 uint8_t *pucMessageBufferStorageArea,
 StaticMessageBuffer_t *pxStaticMessageBuffer);

Listing 271 xMessageBufferCreateStatic() function prototype

Summary

Creates a new message buffer using statically allocated memory. See

xMessageBufferCreate() for a version that uses dynamically allocated memory.

configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for

xMessageBufferCreateStatic() to be available.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xBufferSizeBytes The size, in bytes, of the buffer pointed to by the

pucMessageBufferStorageArea parameter. When a

message is written to the message buffer an additional

sizeof(size_t) bytes are also written to store the message's

length. sizeof(size_t) is typically 4 bytes on a 32-bit

architecture, so on most 32-bit architecture a 10 byte

message will take up 14 bytes of message buffer space. The

maximum number of bytes that can be stored in the

message buffer is actually (xBufferSizeBytes - 1).

pucMessageBufferStorageArea Must point to a uint8_t array that is at least xBufferSizeBytes

+ 1 big. This is the array to which messages are copied

when they are written to the message buffer.

pxStaticMessageBuffer Must point to a uint8_t array that is at least xBufferSizeBytes

 381

+ 1 big. This is the array to which messages are copied

when they are written to the message buffer.

Return Values

If the message buffer is created successfully then a handle to the created message buffer is

returned. If either pucMessageBufferStorageArea or pxStaticMessageBuffer are NULL then

NULL is returned.

Example

/* Used to dimension the array used to hold the messages. The available space
will actually be one less than this, so 999. */
#define STORAGE_SIZE_BYTES 1000

/* Defines the memory that will actually hold the messages within the message
buffer. Should be one more than the value passed in the xBufferSizeBytes
parameter. */
static uint8_t ucStorageBuffer[STORAGE_SIZE_BYTES];

/* The variable used to hold the message buffer structure. */
StaticMessageBuffer_t xMessageBufferStruct;

void MyFunction(void)
{
MessageBufferHandle_t xMessageBuffer;

 xMessageBuffer = xMessageBufferCreateStatic(sizeof(ucStoragegBuffer),
 ucBufferStorage,
 &xMessageBufferStruct);

 /* As neither the pucMessageBufferStorageArea or pxStaticMessageBuffer
 parameters were NULL, xMessageBuffer will not be NULL, and can be used to
 reference the created message buffer in other message buffer API calls. */

 /* Other code that uses the message buffer can go here. */
}

Listing 272 Example use of xMessageBufferCreateStatic()

382

9.3 vMessageBufferDelete()

#include “FreeRTOS.h”
#include “message_buffer.h”

void vMessageBufferDelete(MessageBufferHandle_t xMessageBuffer);

Listing 273 vMessageBufferDelete() function prototype

Summary

Deletes a message buffer that was previously created using a call to xMessageBufferCreate()

or xMessageBufferCreateStatic(). If the message buffer was created using dynamic memory

(that is, by xMessageBufferCreate()), then the allocated memory is freed.

A message buffer handle must not be used after the message buffer has been deleted.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xMessageBuffer The handle of the message buffer to be deleted.

 383

9.4 xMessageBufferIsEmpty()

#include “FreeRTOS.h”
#include “message_buffer.h”

BaseType_t xMessageBufferIsEmpty(MessageBufferHandle_t xMessageBuffer);

Listing 274 xMessageBufferIsEmpty() function prototype

Summary

Queries a message buffer to see if it is empty. A message buffer is empty if it does not contain

any messages.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xMessageBuffer The handle of the message buffer being queried.

Return Values

If the message buffer is empty then pdTRUE is returned. Otherwise pdFALSE is returned.

384

9.5 xMessageBufferIsFull()

#include “FreeRTOS.h”
#include “message_buffer.h”

BaseType_t xMessageBufferIsFull(MessageBufferHandle_t xMessageBuffer);

Listing 275 xMessageBufferIsFull() function prototype

Summary

Queries a message buffer to see if it is full. A message buffer is full if it cannot accept any

more messages, of any size, until space is made available by a message being removed from

the message buffer.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xMessageBuffer The handle of the message buffer being queried

Return Values

If the message buffer is full then pdTRUE is returned. Otherwise pdFALSE is returned.

 385

9.6 xMessageBufferReceive()

#include “FreeRTOS.h”
#include “message_buffer.h”

size_t xMessageBufferReceive(MessageBufferHandle_t xMessageBuffer,
 void *pvRxData,
 size_t xBufferLengthBytes,
 TickType_t xTicksToWait);

Listing 276 xMessageBufferReceive() function prototype

Summary

Receives a discrete message from an RTOS message buffer. Messages can be of variable

length and are copied out of the buffer.

Parameters

xMessageBuffer The handle of the message buffer from which a message is being

received.

pvRxData A pointer to the buffer into which the received message is to be copied.

xBufferLengthBytes The length of the buffer pointed to by the pvRxData parameter. This sets

the maximum length of the message that can be received. If

xBufferLengthBytes is too small to hold the next message then the

message will be left in the message buffer and 0 will be returned.

xTicksToWait The maximum amount of time the task should remain in the

Blocked state to wait for a message, should the message buffer be

empty when xMessageBufferReceive() was called.

xMessageBufferReceive() will return immediately if xTicksToWait is zero

and the message buffer is empty. The block time is specified in tick

periods, so the absolute time it represents is dependent on the tick

frequency. The macro pdMS_TO_TICKS() can be used to convert a time

specified in milliseconds into a time specified in ticks. Setting

xTicksToWait to portMAX_DELAY will cause the task to wait indefinitely

(without timing out), provided INCLUDE_vTaskSuspend is set to 1 in

FreeRTOSConfig.h. Tasks do not use any CPU time when they are in

386

the Blocked state.

Return Values

The length, in bytes, of the message read from the message buffer, if any. If

xMessageBufferReceive() times out before a message became available then zero is

returned. If the length of the message is greater than xBufferLengthBytes then the message

will be left in the message buffer and zero is returned.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as

xMessageBufferSend()) inside a critical section and must use a send block time of 0. Likewise,

if there are to be multiple different readers then the application writer must place each call to a

reading API function (such as xMessageBufferRead()) inside a critical section and must use a

receive block time of 0.

Use xMessageBufferReceive() to read from a message buffer from a task. Use

xMessageBufferReceiveFromISR() to read from a message buffer from an interrupt service

routine (ISR).

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

 387

Example

void vAFunction(MessageBuffer_t xMessageBuffer)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
const TickType_t xBlockTime = pdMS_TO_TICKS(20);

 /* Receive the next message from the message buffer. Wait in the Blocked
 state (so not using any CPU processing time) for a maximum of 100ms for
 a message to become available. */
 xReceivedBytes = xMessageBufferReceive(xMessageBuffer,
 (void *) ucRxData,
 sizeof(ucRxData),
 xBlockTime);

 if(xReceivedBytes > 0)
 {
 /* A ucRxData contains a message that is xReceivedBytes long. Process
 the message here.... */
 }
}

Listing 277 Example use of xMessageBufferReceive()

388

9.7 xMessageBufferReceiveFromISR()

#include “FreeRTOS.h”
#include “message_buffer.h”

size_t xMessageBufferReceiveFromISR(MessageBufferHandle_t xMessageBuffer,
 void *pvRxData,
 size_t xBufferLengthBytes,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 278 xMessageBufferReceiveFromISR() function prototype

Summary

An interrupt safe version of the API function that receives a discrete message from a message

buffer. Messages can be of variable length and are copied out of the buffer.

Parameters

xMessageBuffer The handle of the message buffer from which a message is

being received.

pvRxData A pointer to the buffer into which the received message will be

copied.

xBufferLengthBytes The length of the buffer pointed to by the pvRxData parameter.

This sets the maximum length of the message that can be

received. If xBufferLengthBytes is too small to hold the next

message then the message will be left in the message buffer

and 0 will be returned.

pxHigherPriorityTaskWoken It is possible that a message buffer will have a task blocked on it

waiting for space to become available. Calling

xMessageBufferReceiveFromISR() can make space available,

and so cause a task that is waiting for space to leave the

Blocked state. If calling xMessageBufferReceiveFromISR()

causes a task to leave the Blocked state, and the unblocked

task has a priority higher than the currently executing task (the

task that was interrupted), then, internally,

xMessageBufferReceiveFromISR() will set

 389

*pxHigherPriorityTaskWoken to pdTRUE. If

xMessageBufferReceiveFromISR() sets this value to pdTRUE,

then normally a context switch should be performed before the

interrupt is exited. That will ensure the interrupt returns directly

to the highest priority Ready state task.

*pxHigherPriorityTaskWoken should be set to pdFALSE before

it is passed into the function. See the code example below for

an example.

Return Values

The length, in bytes, of the message read from the message buffer, if any.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as

xMessageBufferSend()) inside a critical section and must use a send block time of 0. Likewise,

if there are to be multiple different readers then the application writer must place each call to a

reading API function (such as xMessageBufferRead()) inside a critical section and must use a

receive block time of 0.

Use xMessageBufferReceive() to read from a message buffer from a task. Use

xMessageBufferReceiveFromISR() to read from a message buffer from an interrupt service

routine (ISR).

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

390

Example

/* A message buffer that has already been created. */
MessageBuffer_t xMessageBuffer;

void vAnInterruptServiceRoutine(void)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
BaseType_t xHigherPriorityTaskWoken = pdFALSE; /* Initialised to pdFALSE. */

 /* Receive the next message from the message buffer. */
 xReceivedBytes = xMessageBufferReceiveFromISR(xMessageBuffer,
 (void *) ucRxData,
 sizeof(ucRxData),
 &xHigherPriorityTaskWoken);

 if(xReceivedBytes > 0)
 {
 /* A ucRxData contains a message that is xReceivedBytes long. Process
 the message here.... */
 }

 /* If xHigherPriorityTaskWoken was set to pdTRUE inside
 xMessageBufferReceiveFromISR() then a task that has a priority above the
 priority of the currently executing task was unblocked and a context
 switch should be performed to ensure the ISR returns to the unblocked
 task. In most FreeRTOS ports this is done by simply passing
 xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
 variables value, and perform the context switch if necessary. Check the
 documentation for the port in use for port specific instructions. */
 taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 279 Example use of xMessageBufferReceiveFromISR()

 391

9.8 xMessageBufferReset()

#include “FreeRTOS.h”
#include “message_buffer.h”

BaseType_t xMessageBufferReset(MessageBufferHandle_t xMessageBuffer);

Listing 280 xMessageBufferReset() function prototype

Summary

Resets a message buffer to its initial, empty, state. Any data that was in the message buffer is

discarded. A message buffer can only be reset if there are no tasks blocked waiting to either

send to or receive from the message buffer.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xMessageBuffer The handle of the message buffer being reset.

Return Values

If the message buffer is reset then pdPASS is returned. If there was a task blocked waiting to

send to or read from the message buffer then the message buffer will not be reset and pdFAIL

is returned.

392

9.9 xMessageBufferSend()

#include “FreeRTOS.h”
#include “message_buffer.h”

size_t xMessageBufferSend(MessageBufferHandle_t xMessageBuffer,
 const void *pvTxData,
 size_t xDataLengthBytes,
 TickType_t xTicksToWait);

Listing 281 xMessageBufferSend() function prototype

Summary

Sends a discrete message to a message buffer. The message can be any length that fits

within the buffer's free space, and is copied into the buffer.

Parameters

xMessageBuffer The handle of the message buffer to which a message is being sent.

pvTxData A pointer to the message that is to be copied into the message buffer.

xDataLengthBytes The length of the message. That is, the number of bytes to copy from

pvTxData into the message buffer. When a message is written to the

message buffer an additional sizeof(size_t) bytes are also written to

store the message's length. sizeof(size_t) is typically 4 bytes on a 32-bit

architecture, so on most 32-bit architecture setting xDataLengthBytes to

20 will reduce the free space in the message buffer by 24 bytes (20 bytes

of message data and 4 bytes to hold the message length).

xTicksToWait xTicksToWait The maximum amount of time the calling task should

remain in the Blocked state to wait for enough space to become available

in the message buffer, should the message buffer have insufficient space

when xMessageBufferSend() is called. The calling task will never block if

xTicksToWait is zero. The block time is specified in tick periods, so the

absolute time it represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks. Setting xTicksToWait to

 393

portMAX_DELAY will cause the task to wait indefinitely (without timing

out), provided INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.

Tasks do not use any CPU time when they are in the Blocked state.

Return Values

The number of bytes written to the message buffer. If the call to xMessageBufferSend() times

out before there was enough space to write the message into the message buffer then zero is

returned. If the call did not time out then xDataLengthBytes is returned.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as

xMessageBufferSend()) inside a critical section and use a send block time of 0. Likewise, if

there are to be multiple different readers then the application writer must place each call to a

reading API function (such as xMessageBufferRead()) inside a critical section and use a

receive block time of 0.

Use xMessageBufferSend() to write to a message buffer from a task. Use

xMessageBufferSendFromISR() to write to a message buffer from an interrupt service routine

(ISR).

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

394

Example

void vAFunction(MessageBufferHandle_t xMessageBuffer)
{
size_t xBytesSent;
uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
char *pcStringToSend = "String to send";
const TickType_t x100ms = pdMS_TO_TICKS(100);

 /* Send an array to the message buffer, blocking for a maximum of 100ms to
 wait for enough space to be available in the message buffer. */
 xBytesSent = xMessageBufferSend(xMessageBuffer,
 (void *) ucArrayToSend,
 sizeof(ucArrayToSend),
 x100ms);

 if(xBytesSent != sizeof(ucArrayToSend))
 {
 /* The call to xMessageBufferSend() times out before there was enough
 space in the buffer for the data to be written. */
 }

 /* Send the string to the message buffer. Return immediately if there is
 not enough space in the buffer. */
 xBytesSent = xMessageBufferSend(xMessageBuffer,
 (void *) pcStringToSend,
 strlen(pcStringToSend), 0);

 if(xBytesSent != strlen(pcStringToSend))
 {
 /* The string could not be added to the message buffer because there was
 not enough free space in the buffer. */
 }
}

Listing 282 Example use of xMessageBufferSend()

 395

9.10 xMessageBufferSendFromISR()

#include “FreeRTOS.h”
#include “message_buffer.h”

size_t xMessageBufferSendFromISR(MessageBufferHandle_t xMessageBuffer,
 const void *pvTxData,
 size_t xDataLengthBytes,
 BaseType_t *pxHigherPriorityTaskWoken);

Listing 283 xMessageBufferSendFromISR() function prototype

Summary

Interrupt safe version of the API function that sends a discrete message to the message

buffer. The message can be any length that fits within the buffer's free space, and is copied

into the buffer.

Parameters

xMessageBuffer The handle of the message buffer to which a message is being

sent.

pvTxData A pointer to the message that is to be copied into the message

buffer.

xDataLengthBytes The length of the message. That is, the number of bytes to copy

from pvTxData into the message buffer. When a message is

written to the message buffer an additional sizeof(size_t) bytes

are also written to store the message's length. sizeof(size_t) is

typically 4 bytes on a 32-bit architecture, so on most 32-bit

architecture setting xDataLengthBytes to 20 will reduce the free

space in the message buffer by 24 bytes (20 bytes of message

data and 4 bytes to hold the message length).

pxHigherPriorityTaskWoken It is possible that a message buffer will have a task blocked on it

waiting for data. Calling xMessageBufferSendFromISR() can

make data available, and so cause a task that was waiting for

data to leave the Blocked state. If calling

xMessageBufferSendFromISR() causes a task to leave the

396

Blocked state, and the unblocked task has a priority higher than

the currently executing task (the task that was interrupted), then,

internally, xMessageBufferSendFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE. If

xMessageBufferSendFromISR() sets this value to pdTRUE,

then normally a context switch should be performed before the

interrupt is exited. This will ensure that the interrupt returns

directly to the highest priority Ready state task.

*pxHigherPriorityTaskWoken should be set to pdFALSE before

it is passed into the function. See the code example below for

an example.

Return Values

The number of bytes actually written to the message buffer. If the message buffer didn't have

enough free space for the message to be stored then 0 is returned, otherwise

xDataLengthBytes is returned.

Notes

Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message

buffer implementation, as message buffers are built on top of stream buffers) assumes there is

only one task or interrupt that will write to the buffer (the writer), and only one task or interrupt

that will read from the buffer (the reader). It is safe for the writer and reader to be different

tasks or interrupts, but, unlike other FreeRTOS objects, it is not safe to have multiple different

writers or multiple different readers. If there are to be multiple different writers then the

application writer must place each call to a writing API function (such as

xMessageBufferSend()) inside a critical section and use a send block time of 0. Likewise, if

there are to be multiple different readers then the application writer must place each call to a

reading API function (such as xMessageBufferRead()) inside a critical section and use a

receive block time of 0.

Use xMessageBufferSend() to write to a message buffer from a task. Use

xMessageBufferSendFromISR() to write to a message buffer from an interrupt service routine

(ISR).

 397

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Example

/* A message buffer that has already been created. */
MessageBufferHandle_t xMessageBuffer;

void vAnInterruptServiceRoutine(void)
{
size_t xBytesSent;
char *pcStringToSend = "String to send";
BaseType_t xHigherPriorityTaskWoken = pdFALSE; /* Initialised to pdFALSE. */

 /* Attempt to send the string to the message buffer. */
 xBytesSent = xMessageBufferSendFromISR(xMessageBuffer,
 (void *) pcStringToSend,
 strlen(pcStringToSend),
 &xHigherPriorityTaskWoken);

 if(xBytesSent != strlen(pcStringToSend))
 {
 /* The string could not be added to the message buffer because there was
 not enough free space in the buffer. */
 }

 /* If xHigherPriorityTaskWoken was set to pdTRUE inside
 xMessageBufferSendFromISR() then a task that has a priority above the
 priority of the currently executing task was unblocked and a context
 switch should be performed to ensure the ISR returns to the unblocked
 task. In most FreeRTOS ports this is done by simply passing
 xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
 variables value, and perform the context switch if necessary. Check the
 documentation for the port in use for port specific instructions. */
 taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Listing 284 Example use of xMessageBufferSendFromISR()

398

9.11 xMessageBufferSpacesAvailable()

#include “FreeRTOS.h”
#include “message_buffer.h”

size_t xMessageBufferSpacesAvailable(MessageBufferHandle_t xMessageBuffer);

Listing 285 xMessageBufferSpacesAvailable () function prototype

Summary

Queries a message buffer to see how much free space it contains, which is equal to the

amount of data that can be sent to the message buffer before it is full. The returned value is 4

bytes larger than the maximum message size that can be sent to the message buffer.

Message buffer functionality is enabled by including the FreeRTOS/source/stream_buffer.c

source file in the build (as message buffers use stream buffers).

Parameters

xMessageBuffer The handle of the message buffer being queried.

Return Values

The number of bytes that can be written to the message buffer before the message buffer

would be full. When a message is written to the message buffer an additional sizeof(size_t)

bytes are also written to store the message's length. sizeof(size_t) is typically 4 bytes on a

32-bit architecture, so if xMessageBufferSpacesAvailable() returns 10, then the size of the

largest message that can be written to the message buffer is 6 bytes.

 399

APPENDIX 1: Data Types and Coding Style Guide

Data Types

Each port of FreeRTOS has a unique portmacro.h header file that contains (amongst other

things) definitions for two special data types, TickType_t and BaseType_t. These data types

are described in Table 3.

Table 3. Special data types used by FreeRTOS

Macro or typedef
used Actual type

TickType_t This is used to store the tick count value, and by variables that specify

block times.

TickType_t can be either an unsigned 16-bit type or an unsigned 32-bit

type, depending on the setting of configUSE_16_BIT_TICKS within

FreeRTOSConfig.h.

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit

architectures, but severely limits the maximum block period that can be

specified. There is no reason to use a 16-bit type on a 32-bit

architecture.

BaseType_t This is always defined to be the most efficient data type for the

architecture. Typically, this is a 32-bit type on a 32-bit architecture, a

16-bit type on a 16-bit architecture, and an 8-bit type on an 8-bit

architecture.

BaseType_t is generally used for variables that can take only a very

limited range of values, and for Booleans.

Standard data types other than ‘char’ are not used (see below), instead type names defined

within the compiler’s stdint.h header file are used. ‘char’ types are only permitted to point to

ASCII strings or reference single ASCII characters.

400

Variable Names

Variables are prefixed with their type: ‘c’ for char, ‘s’ for short, ‘l’ for long, and ‘x’ for

BaseType_t and any other types (structures, task handles, queue handles, etc.).

If a variable is unsigned, it is also prefixed with a ‘u’. If a variable is a pointer, it is also prefixed

with a ‘p’. Therefore, a variable of type unsigned char will be prefixed with ‘uc’, and a variable

of type pointer to char will be prefixed with ‘pc’.

Function Names

Functions are prefixed with both the type they return and the file they are defined in. For

example:

• vTaskPrioritySet() returns a void and is defined within task.c.

• xQueueReceive() returns a variable of type BaseType_t and is defined within queue.c.

• vSemaphoreCreateBinary() returns a void and is defined within semphr.h.

File scope (private) functions are prefixed with ‘prv’.

Formatting

One tab is always set to equal four spaces.

Macro Names

Most macros are written in upper case and prefixed with lower case letters that indicate where

the macro is defined. Table 4 provides a list of prefixes.

 401

Table 4. Macro prefixes

Prefix Location of macro definition

port (for example, portMAX_DELAY) portable.h

task (for example, taskENTER_CRITICAL()) task.h

pd (for example, pdTRUE) projdefs.h

config (for example, configUSE_PREEMPTION) FreeRTOSConfig.h

err (for example, errQUEUE_FULL) projdefs.h

Note that the semaphore API is written almost entirely as a set of macros, but follows the

function naming convention, rather than the macro naming convention.

The macros defined in Table 5 are used throughout the FreeRTOS source code.

Table 5. Common macro definitions

Macro Value

pdTRUE 1

pdFALSE 0

pdPASS 1

pdFAIL 0

Rationale for Excessive Type Casting

The FreeRTOS source code can be compiled with many different compilers, all of which differ

in how and when they generate warnings. In particular, different compilers want casting to be

used in different ways. As a result, the FreeRTOS source code contains more type casting

than would normally be warranted.

402

INDEX

A
API Usage Restrictions, 19

C
configASSERT, 334
configCHECK_FOR_STACK_OVERFLOW, 335
configCPU_CLOCK_HZ, 337
configGENERATE_RUN_TIME_STATS, 337
configIDLE_SHOULD_YIELD, 338
configINCLUDE_APPLICATION_DEFINED_PRIVILE

GED_FUNCTIONS, 340
configKERNEL_INTERRUPT_PRIORITY, 340
configMAX_CO_ROUTINE_PRIORITIES, 342
configMAX_PRIORITIES, 36, 41, 135, 342
configMAX_SYSCALL_INTERRUPT_PRIORITY, 340,

343
configMAX_TASK_NAME_LEN, 343
configMINIMAL_STACK_DEPTH, 36
configMINIMAL_STACK_SIZE, 343
configNUM_THREAD_LOCAL_STORAGE_POINTER

S, 343
configQUEUE_REGISTRY_SIZE, 343
configTICK_RATE_HZ, 344
configTIMER_QUEUE_LENGTH, 344
configTIMER_TASK_PRIORITY, 345
configTIMER_TASK_STACK_DEPTH, 345
configTOTAL_HEAP_SIZE, 345
configUSE_16_BIT_TICKS, 346
configUSE_ALTERNATIVE_API, 346
configUSE_APPLICATION_TASK_TAG, 346
configUSE_CO_ROUTINES, 346
configUSE_COUNTING_SEMAPHORES, 347
configUSE_IDLE_HOOK, 347
configUSE_MALLOC_FAILED_HOOK, 348
configUSE_MUTEXES, 348
configUSE_NEWLIB_REENTRANT, 348
configUSE_PORT_OPTIMISED_TASK_SELECTION,

349
configUSE_PREEMPTION, 349
configUSE_QUEUE_SETS, 350
configUSE_RECURSIVE_MUTEXES, 350
configUSE_STATS_FORMATTING_FUNCTIONS, 350
configUSE_TICK_HOOK, 350, 351
configUSE_TICKLESS_IDLE, 351
configUSE_TIME_SLICING, 351
configUSE_TIMERS, 351
configUSE_TRACE_FACILITY, 352

D
Data Types, 399

E
eTaskGetState(), 82

F
Formatting, 400
FreeRTOSConfig.h, 329
Function Names, 400

H
high water mark, 80
highest priority, 36, 41, 135

I
INCLUDE_ xTimerPendFunctionCall, 333
INCLUDE_eTaskGetState, 332
INCLUDE_uxTaskGetStackHighWaterMark, 332
INCLUDE_uxTaskPriorityGet, 332
INCLUDE_vTaskDelay, 331
INCLUDE_vTaskDelayUntil, 331
INCLUDE_vTaskDelete, 331
INCLUDE_vTaskPrioritySet, 332
INCLUDE_vTaskSuspend, 332
INCLUDE_xEventGroupSetBitFromISR, 330
INCLUDE_xSemaphoreGetMutexHolder, 330
INCLUDE_xTaskGetCurrentTaskHandle, 331
INCLUDE_xTaskGetIdleTaskHandle, 331
INCLUDE_xTaskGetSchedulerState, 331
INCLUDE_xTaskResumeFromISR, 332

L
lowest priority, 36, 41, 135

M
Macro Names, 400

P
pcTaskGetName(), 92, 176
pcTimerGetName(), 275
portBASE_TYPE, 399
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS,

76, 338
portGET_RUN_TIME_COUNTER_VALUE, 77, 338
portMAX_DELAY, 186, 190, 204
portSWITCH_TO_USER_MODE(), 23
portTickType, 399
priority, 36, 41
pvTaskGetTheadLocalStoragePointer(), 90
pvTimerGetTimerID(), 279

T
tabs, 400
task handle, 37, 44

 403

taskDISABLE_INTERRUPTS(), 56
taskENABLE_INTERRUPTS(), 58
taskENTER_CRITICAL_FROM_ISR(), 62, 66
taskENTER_CRITICAL(), 59
taskEXIT_CRITICAL(), 64
taskYIELD(), 159
Type Casting, 401

U
ulTaskNotifyTake(), 124
ulTaskNotifyValueClear(), 127
uxQueueMessagesWaiting(), 179
uxQueueMessagesWaitingFromISR(), 180
uxQueueSpacesAvailable(), 210
uxSemaphoreGetCount(), 238
uxTaskGetNumberOfTasks(), 74
uxTaskGetStackHighWaterMark (), 80
uxTaskGetSystemState(), 84, 88
uxTaskPriorityGet(), 133
uxTimerGetReloadMode(), 277

V
Variable Names, 400
vEventGroupDelete(), 313
vMessageBufferDelete(), 382
vQueueAddToRegistry(), 162
vQueueDelete(), 174
vSemaphoreCreateBinary(), 213
vSemaphoreDelete(), 237
vStreamBufferDelete(), 359
vTaskDelay(), 49
vTaskDelayUntil(), 51
vTaskDelete(), 54
vTaskGetRunTimeStats(), 75
vTaskList(), 97
vTaskNotifyGiveFromISR(), 119
vTaskPrioritySet(), 135
vTaskResume(), 137
vTaskSetApplicationTaskTag(), 145
vTaskSetThreadLocalStoragePointer(), 147
vTaskSetTimeOutState(), 149
vTaskStartScheduler(), 151
vTaskStepTick(), 153
vTaskSuspend(), 155
vTaskSuspendAll(), 157
vTimerSetTimerID(), 293

X
xEventGroupClearBits(), 304
xEventGroupClearBitsFromISR(), 306
xEventGroupCreate(), 309
xEventGroupCreateStatic(), 311
xEventGroupGetBits(), 314
xEventGroupGetBitsFromISR(), 315
xEventGroupSetBits(), 316
xEventGroupSetBitsFromISR(), 318
xEventGroupSync(), 321
xEventGroupWaitBits(), 325
xMessageBufferCreate(), 378
xMessageBufferCreateStatic(), 380
xMessageBufferIsEmpty(), 383

xMessageBufferIsFull(), 384
xMessageBufferReceive(), 385
xMessageBufferReceiveFromISR(), 388
xMessageBufferReset(), 391
xMessageBufferSend(), 392
xMessageBufferSendFromISR(), 395
xMessageBufferSpacesAvailable(), 398
xQueueAddToSet(), 164
xQueueCreate(), 166
xQueueCreateSet(), 168
xQueueCreateStatic(), 172
xQueueIsQueueEmptyFromISR(), 177
xQueueIsQueueFullFromISR(), 178
xQueueOverwrite(), 182
xQueueOverwriteFromISR(), 184
xQueuePeek(), 186
xQueuePeekFromISR(), 189
xQueueReceive(), 190
xQueueReceiveFromISR(), 193, 251
xQueueRemoveFromSet(), 196
xQueueReset(), 198
xQueueSelectFromSet(), 199
xQueueSelectFromSetFromISR(), 201
xQueueSend(), 203
xQueueSendFromISR(), 206
xQueueSendToBack(), 203
xQueueSendToBackFromISR(), 206
xQueueSendToFront(), 203
xQueueSendToFrontFromISR(), 206
xSemaphoreCreateBinary(), 216
xSemaphoreCreateBinaryStatic(), 219
xSemaphoreCreateCounting(), 222
xSemaphoreCreateCountingStatic(), 225
xSemaphoreCreateMutex(), 228
xSemaphoreCreateMutexStatic(), 230
xSemaphoreCreateRecursiveMutex(), 232
xSemaphoreCreateRecursiveMutexStatic(), 235
xSemaphoreGetMutexHolder(), 239
xSemaphoreGive(), 240
xSemaphoreGiveFromISR(), 242
xSemaphoreGiveRecursive(), 245
xSemaphoreTake(), 248
xSemaphoreTakeRecursive(), 253
xStreamBufferBytesAvailable(), 354
xStreamBufferCreate(), 355
xStreamBufferCreateStatic(), 357
xStreamBufferIsEmpty(), 360
xStreamBufferIsFull(), 361
xStreamBufferReceive(), 362
xStreamBufferReceiveFromISR(), 365
xStreamBufferReset(), 368
xStreamBufferSend(), 369
xStreamBufferSendFromISR(), 372
xStreamBufferSetTriggerLevel(), 375
xStreamBufferSpacesAvailable(), 376
xTaskAbortDelay(), 27
xTaskAllocateMPURegions(), 24
xTaskCallApplicationHook(), 29
xTaskCatchUpTicks(), 32
xTaskCheckForTimeOut(), 33
xTaskCreate(), 35
xTaskCreateRestricted(), 44
xTaskCreateStatic(), 40
xTaskGetApplicationTaskTag(), 68
xTaskGetCurrentTaskHandle(), 70

404

xTaskGetHandle(), 72
xTaskGetIdleTaskHandle(), 71
xTaskGetSchedulerState(), 79
xTaskGetTickCount(), 93
xTaskGetTickCountFromISR(), 95
xTaskNotify(), 100
xTaskNotifyAndQuery(), 103
xTaskNotifyAndQueryFromISR(), 107
xTaskNotifyFromISR(), 111
xTaskNotifyGive(), 116
xTaskNotifyStateClear(), 122
xTaskNotifyWait(), 130
xTaskResumeAll(), 139
xTaskResumeFromISR(), 142
xTimerChangePeriod(), 258
xTimerChangePeriodFromISR(), 261

xTimerCreate(), 263
xTimerCreateStatic(), 267
xTimerDelete(), 271
xTimerGetExpireTime(), 273
xTimerGetPeriod(), 276
xTimerGetTimerDaemonTaskHandle(), 278
xTimerIsTimerActive(), 281
xTimerPendFunctionCall (), 283
xTimerPendFunctionCallFromISR(), 285
xTimerReset(), 288
xTimerResetFromISR(), 291
xTimerStart(), 295
xTimerStartFromISR(), 297
xTimerStop(), 299
xTimerStopFromISR(), 301

 405

