Quality RTOS & Embedded Software
About   Contact   Support   FAQ

 Real time embedded FreeRTOS RSS feed 
Real time embedded FreeRTOS mailing list 
Quick Start Supported MCUs Books & Kits Trace Tools Ecosystem TCP & FAT Training

Last site update June 02 2015

What is An RTOS?

"Provide a free product that surpasses the quality and
service demanded by users of commercial alternatives"

Real Time Engineers Ltd. have been working in close partnership with the world's leading chip companies for more than 12 years to provide you market leading, commercial grade, and completely free high quality RTOS and tools that are free from any IP infringement risk... but what is an RTOS?

This page starts by defining an operating system, then refines this to define a real time operating system (RTOS), then refines this once more to define a real timer kernel (or real time executive).

See also the FAQ item "why an RTOS" for information on when and why it can be useful to use an RTOS in your embedded systems software design.

What is a General Purpose Operating System?

An operating system is a computer program that supports a computer's basic functions, and provides services to other programs (or applications) that run on the computer. The applications provide the functionality that the user of the computer wants or needs. The services provided by the operating system make writing the applications faster, simpler, and more maintainable. If you are reading this web page, then you are using a web browser (the application program that provides the functionality you are interested in), which will itself be running in an environment provided by an operating system.

What is an RTOS?

Most operating systems appear to allow multiple programs to execute at the same time. This is called multi-tasking. In reality, each processor core can only be running a single thread of execution at any given point in time. A part of the operating system called the scheduler is responsible for deciding which program to run when, and provides the illusion of simultaneous execution by rapidly switching between each program.

The type of an operating system is defined by how the scheduler decides which program to run when. For example, the scheduler used in a multi user operating system (such as Unix) will ensure each user gets a fair amount of the processing time. As another example, the scheduler in a desk top operating system (such as Windows) will try and ensure the computer remains responsive to its user. [Note: FreeRTOS is not a big operating system, nor is it designed to run on a desktop computer class processor, I use these examples purely because they are systems readers will be familiar with]

The scheduler in a Real Time Operating System (RTOS) is designed to provide a predictable (normally described as deterministic) execution pattern. This is particularly of interest to embedded systems as embedded systems often have real time requirements. A real time requirements is one that specifies that the embedded system must respond to a certain event within a strictly defined time (the deadline). A guarantee to meet real time requirements can only be made if the behaviour of the operating system's scheduler can be predicted (and is therefore deterministic).

Traditional real time schedulers, such as the scheduler used in FreeRTOS, achieve determinism by allowing the user to assign a priority to each thread of execution. The scheduler then uses the priority to know which thread of execution to run next. In FreeRTOS, a thread of execution is called a task.

What is FreeRTOS?

[see also "more about FreeRTOS"]

FreeRTOS is a class of RTOS that is designed to be small enough to run on a microcontroller - although its use is not limited to microcontroller applications.

A microcontroller is a small and resource constrained processor that incorporates, on a single chip, the processor itself, read only memory (ROM or Flash) to hold the program to be executed, and the random access memory (RAM) needed by the programs it executes. Typically the program is executed directly from the read only memory.

Microcontrollers are used in deeply embedded applications (those applications where you never actually see the processors themselves, or the software they are running) that normally have a very specific and dedicated job to do. The size constraints, and dedicated end application nature, rarely warrant the use of a full RTOS implementation - or indeed make the use of a full RTOS implementation possible. FreeRTOS therefore provides the core real time scheduling functionality, inter-task communication, timing and synchronisation primitives only. This means it is more accurately described as a real time kernel, or real time executive. Additional functionality, such as a command console interface, or networking stacks, can be then be included with add-on components.

[ Back to the top ]    [ About FreeRTOS ]    [ Sitemap ]    [ ]

Copyright (C) 2004-2010 Richard Barry. Copyright (C) 2010-2015 Real Time Engineers Ltd.
Any and all data, files, source code, html content and documentation included in the FreeRTOSTM distribution or available on this site are the exclusive property of Real Time Engineers Ltd.. See the files license.txt (included in the distribution) and this copyright notice for more information. FreeRTOSTM and FreeRTOS.orgTM are trade marks of Real Time Engineers Ltd.

Latest News - New Book Edition!

Receive a complimentary pre-release pdf of our up-coming book "Mastering the FreeRTOS Real Time Kernel, a Hands-On Tutorial Guide" with every purchased copy of the existing "Using the FreeRTOS Real Time Kernel" book.

Sponsored Links

⇓ Now With No Code Size Limit! ⇓
⇑ Free Download Without Registering ⇑

FreeRTOS Partners

ARM Connected RTOS partner for all ARM microcontroller cores

Renesas Electronics Gold Alliance RTOS Partner.jpg

Microchip Premier RTOS Partner

RTOS partner of NXP for all NXP ARM microcontrollers

Atmel RTOS partner supporting ARM Cortex-M3 and AVR32 microcontrollers

STMicro RTOS partner supporting ARM7, ARM Cortex-M3, ARM Cortex-M4 and ARM Cortex-M0

Xilinx Microblaze and Zynq partner

Altera RTOS partner for Nios II and Cortex-A9 SoC

Freescale Alliance RTOS Member supporting ARM and ColdFire microcontrollers

Infineon ARM Cortex-M microcontrollers

Texas Instruments MCU Developer Network RTOS partner for ARM and MSP430 microcontrollers

Cypress RTOS partner supporting ARM Cortex-M3

Fujitsu RTOS partner supporting ARM Cortex-M3 and FM3

Microsemi (previously Actel) RTOS partner supporting ARM Cortex-M3

Atollic Partner

IAR Partner

Keil ARM Partner

Embedded Artists