Quality RTOS & Embedded Software
About   Contact   Support   FAQ

 Real time embedded FreeRTOS RSS feed 
Real time embedded FreeRTOS mailing list 
Quick Start Supported MCUs Books & Kits Trace Tools Ecosystem TCP & FAT Training

Last site update June 02 2015

[RTOS Fundamentals]

The scheduler is the part of the kernel responsible for deciding which task should be executing at any particular time. The kernel can suspend and later resume a task many times during the task lifetime.

The scheduling policy is the algorithm used by the scheduler to decide which task to execute at any point in time. The policy of a (non real time) multi user system will most likely allow each task a "fair" proportion of processor time. The policy used in real time / embedded systems is described later.

In addition to being suspended involuntarily by the kernel a task can choose to suspend itself. It will do this if it either wants to delay (sleep) for a fixed period, or wait (block) for a resource to become available (eg a serial port) or an event to occur (eg a key press). A blocked or sleeping task is not able to execute, and will not be allocated any processing time.


Referring to the numbers in the diagram above:

  • At (1) task 1 is executing.
  • At (2) the kernel suspends (swapps out) task 1 ...
  • ... and at (3) resumes task 2.
  • While task 2 is executing (4), it locks a processor peripheral for its own exclusive access.
  • At (5) the kernel suspends task 2 ...
  • ... and at (6) resumes task 3.
  • Task 3 tries to access the same processor peripheral, finding it locked task 3 cannot continue so suspends itself at (7).
  • At (8) the kernel resumes task 1.
  • Etc.
  • The next time task 2 is executing (9) it finishes with the processor peripheral and unlocks it.
  • The next time task 3 is executing (10) it finds it can now access the processor peripheral and this time executes until suspended by the kernel.

Next: RTOS Fundamentals - Context Switching

[ Back to the top ]    [ About FreeRTOS ]    [ Sitemap ]    [ ]

Copyright (C) 2004-2010 Richard Barry. Copyright (C) 2010-2015 Real Time Engineers Ltd.
Any and all data, files, source code, html content and documentation included in the FreeRTOSTM distribution or available on this site are the exclusive property of Real Time Engineers Ltd.. See the files license.txt (included in the distribution) and this copyright notice for more information. FreeRTOSTM and FreeRTOS.orgTM are trade marks of Real Time Engineers Ltd.

Latest News - New Book Edition!

Receive a complimentary pre-release pdf of our up-coming book "Mastering the FreeRTOS Real Time Kernel, a Hands-On Tutorial Guide" with every purchased copy of the existing "Using the FreeRTOS Real Time Kernel" book.

Sponsored Links

⇓ Now With No Code Size Limit! ⇓
⇑ Free Download Without Registering ⇑

FreeRTOS Partners

ARM Connected RTOS partner for all ARM microcontroller cores

Renesas Electronics Gold Alliance RTOS Partner.jpg

Microchip Premier RTOS Partner

RTOS partner of NXP for all NXP ARM microcontrollers

Atmel RTOS partner supporting ARM Cortex-M3 and AVR32 microcontrollers

STMicro RTOS partner supporting ARM7, ARM Cortex-M3, ARM Cortex-M4 and ARM Cortex-M0

Xilinx Microblaze and Zynq partner

Altera RTOS partner for Nios II and Cortex-A9 SoC

Freescale Alliance RTOS Member supporting ARM and ColdFire microcontrollers

Infineon ARM Cortex-M microcontrollers

Texas Instruments MCU Developer Network RTOS partner for ARM and MSP430 microcontrollers

Cypress RTOS partner supporting ARM Cortex-M3

Fujitsu RTOS partner supporting ARM Cortex-M3 and FM3

Microsemi (previously Actel) RTOS partner supporting ARM Cortex-M3

Atollic Partner

IAR Partner

Keil ARM Partner

Embedded Artists